首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystal structures of CeAlO3 and the solid solutions Ce1−xRxAlO3 (R=La, Nd), and their thermal behaviour in a wide temperature range of 12−1200 K have been precisely determined by means of in situ high-resolution X-ray powder diffraction technique applying synchrotron radiation, thermal analysis and magnetic measurements. The unique sequence of the reversible phase transitions I4/mcmImmaRcPmm has been detected in CeAlO3 and solid solutions formed in the pseudo-binary system CeAlO3-LaAlO3. In the Ce1−xNdxAlO3 system, the samples with x=0.3 and 0.5 compositions undergo three phase transformations I2/mImmaRcPmm, whereas for the Ce-rich sample Ce0.9Nd0.1AlO3 four successive transitions are observed: I4/mcmI2/mImmaRcPmm. Crystal structure parameters of all structural polymorphs of CeAlO3 and solid solutions based on them as well as their thermal evolution are reported. Based on in situ powder diffraction and DTA/DSC data, the phase diagrams of the pseudo-binary systems CeAlO3-LaAlO3 and CeAlO3-NdAlO3 are constructed together with a combined phase diagram, where the transition temperatures are presented as a function of the average radius of rare-earth cations.  相似文献   

2.
Polycrystalline samples of the Lu1−xLaxMn2O5 solid solution system were synthesized under moderate conditions for compositions with x up to 0.815. Due to the large difference in ionic size between Lu3+ and La3+, significant changes in lattice parameters and severe lattice strains are present in the solid solution. This in turn leads to the composition dependent thermal stability and magnetic properties. It is found that the solid solution samples with x≤0.487 decompose at a single well defined temperature, while those with x≥0.634 decompose over a temperature range with the formation of intermediate phases. For the samples with x≤0.487, the primary magnetic transition occurs below 40 K, similar to LuMn2O5 and other individual RMn2O5 (R=Bi, Y, and rare earth) compounds. In contrast, a magnetic phase with a 200 K onset transition temperature is dominant in the samples with x≥0.634.  相似文献   

3.
The paper reports on the temperature dependence of the electrical and thermal conductivity, Hall constant, and Seebeck coefficient of Bi2−xInxSe3 (x=0, 0.2, 0.4) single crystals measured over the temperature range from 2 to 300 K. One single-valley conduction band model is used to interpret relations among transport coefficients. The data analysis relies on the use of a mixed carrier scattering mechanism consisting of acoustic scattering and scattering on ionized impurities. The effect of In incorporation into the Bi2Se3 crystal lattice on the individual components of thermal conductivity is evaluated and discussed.  相似文献   

4.
The thermal evolution and structural properties of fluorite-related δ-Bi2O3-type Bi9ReO17 were studied with variable temperature neutron powder diffraction, synchrotron X-ray powder diffraction and electron diffraction. The thermodynamically stable room-temperature crystal structure is monoclinic P21/c, a=9.89917(5), b=19.70356(10), c=11.61597(6) Å, β=125.302(2)° (Rp=3.51%, wRp=3.60%) and features clusters of ReO4 tetrahedra embedded in a distorted Bi–O fluorite-like network. This phase is stable up to 725 °C whereupon it transforms to a disordered δ-Bi2O3-like phase, which was modeled with δ-Bi2O3 in cubic Fmm with a=5.7809(1) Å (Rp=2.49%, wRp=2.44%) at 750 °C. Quenching from above 725 °C leads to a different phase, the structure of which has not been solved but appears on the basis of spectroscopic evidence to contain both ReO4 tetrahedra and ReO6 octahedra.  相似文献   

5.
Summary The microcristalline phase (NH3OH)2TiF6 has been isolated from aqueous solution. It crystallizes in the tetragonal system with cell parameters:a=9.654±0.005 Å,c=11.546±0.010 Å. The hydroxylammonium fluorotitanate was characterized by vibrational spectroscopy and its thermal decomposition studied by DSC and TG analysis.
  相似文献   

6.
Thermoelectric properties of polycrystalline La1−xSrxCoO3, where Sr2+ is substituted in La3+ site in perovskite-type LaCoO3, have been investigated. Sr-doping increases the electrical conductivity (σ) of La1−xSrxCoO3, and also decreases the Seebeck coefficient (S) for 0.01?x?0.40. A Hall coefficient measurement reveals that the increase in electrical conductivity arises from increases in both carrier concentration and the Hall mobility. The decrease in the Seebeck coefficient is caused by a decrease in carrier effective mass as well as increase in carrier concentration. The highest power factor (σS2) is 3.7×10−4 W m−1 K−2 at 250 K for x=0.10. The thermal conductivity (κ) is about 2 W m−1 K−1 at 300 K for 0?x?0.04, and increases for x?0.05 because of an increase in heat transport by conductive carrier. The thermoelectric properties of La1−xSrxCoO3 are improved by Sr-doping, and the figure of merit (Z=σS2 κ−1) reaches 1.6×10−4 K−1 for x=0.06 at 300 K (ZT=0.048). For heavily Sr-doped samples, the thermoelectric properties diminish mainly because of the decrease in the Seebeck coefficient and the increase in thermal conductivity.  相似文献   

7.
The thermal behaviour of Ba[Cu(C2O4)2(H2O)]·5H2O in N2 and in O2 has been examined using thermogravimetry (TG) and differential scanning calorimetry (DSC). The dehydration starts at relatively low temperatures (about 80°C), but continues until the onset of the decomposition (about 280°C). The decomposition takes place in two major stages (onsets 280 and 390°C). The mass of the intermediate after the first stage corresponded to the formation of barium oxalate and copper metal and, after the second stage, to the formation of barium carbonate and copper metal. The enthalpy for the dehydration was found to be 311±30 kJ mol–1 (or 52±5 kJ (mol of H2O)–1). The overall enthalpy change for the decomposition of Ba[Cu(C2O4)2] in N2 was estimated from the combined area of the peaks of the DSC curve as –347 kJ mol–1. The kinetics of the thermal dehydration and decomposition were studied using isothermal TG. The dehydration was strongly deceleratory and the -time curves could be described by the three dimensional diffusion (D3) model. The values of the activation energy and the pre-exponential factor for the dehydration were 125±4 kJ mol–1 and (1.38±0.08)×1015 min–1, respectively. The decomposition was complex, consisting of at least two concurrent processes. The decomposition was analysed in terms of two overlapping deceleratory processes. One process was fast and could be described by the contracting-geometry model withn=5. The other process was slow and could also be described by the contracting-geometry model, but withn=2.The values ofE a andA were 206±23 kJ mol–1 and (2.2±0.5)×1019 min–1, respectively, for the fast process, and 259±37 kJ mol–1 and (6.3±1.8)×1023 min–1, respectively, for the slow process.Dedicated to Prof. Menachem Steinberg on the occasion of his 65th birthday  相似文献   

8.
The main objective of this study was to develop a thermodynamic model for predicting Cr(III) behavior in concentrated NaOH and in mixed NaOH–NaNO3 solutions for application to developing effective caustic leaching strategies for high-level nuclear waste sludges. To meet this objective, the solubility of Cr(OH)3(am) was measured in 0.003 to 10.5 m NaOH, 3.0 m NaOH with NaNO3 varying from 0.1 to 7.5 m, and 4.6 m NaNO3 with NaOH varying from 0.1 to 3.5 m at room temperature (22 ± 2°C). A combination of techniques, X-ray absorption spectroscopy (XAS) and absorptive stripping voltammetry analyses, were used to determine the oxidation state and nature of aqueous Cr. A thermodynamic model, based on the Pitzer equations, was developed from the solubility measurements to account for dramatic increases in aqueous Cr with increases in NaOH concentration. The model includes only two aqueous Cr species, Cr(OH) 4 and Cr2O2(OH) 4 (although the possible presence of a small percentage of higher oligomers at >5.0 m NaOH cannot be discounted) and their ion–interaction parameters with Na+. The logarithms of the equilibrium constants for the reactions involving Cr(OH) 4 [Cr(OH)3(am) + OH Cr(OH) 4 ] and Cr2O2(OH) 4 2– [2Cr(OH)3(am) + 2OH Cr2O2(OH) 4 2– + 2H2O] were determined to be –4.36 ± 0.24 and –5.24 ± 0.24, respectively. This model was further tested and provided close agreement between the observed Cr concentrations in equilibrium with Cr(OH)3(am) in mixed NaOH–NaNO3 solutions and with high-level tank sludges leached with and primarily containing NaOH as the major electrolyte.  相似文献   

9.
The thermal decomposition of [Co(NH3)6]2(C2O4)3·4H2O was studied under isothermal conditions in flowing air and argon. Dissociation of the above complex occurs in three stages. The kinetics of the particular stages thermal decomposition have been evaluated. The RN and/or AM models were selected as those best fitting the experimental TG curves. The activation energies,E, and lnA were calculated with a conventional procedure and by a new method suggested by Kogaet al. [10, 11]. Comparison of the results have showed that the Arrhenius parameters values estimated by the use of both methods are very close. The calculated activation energies were in air: 96 kJ mol–1 (R1.575, stage I); 101 kJ mol–1 (Ain1.725 stage II); 185 kJ mol–1 (A 2.9, stage III) and in argon: 66 kJ mol–1 (A 1.25, stage I); 87 kJ mol–1 (A 1.825, stage II); 133 kJ mol–1 (A 2.525, stage III).  相似文献   

10.
We have prepared a new layered oxycarbide, [Al5.25(5)Si0.75(5)][O1.60(7)C3.40(7)], by isothermal heating of (Al4.4Si0.6)(O1.0C3.0) at 2273 K near the carbon-carbon monoxide buffer. The crystal structure was characterized using X-ray powder diffraction, transmission electron microscopy and energy dispersive X-ray spectroscopy (EDX). The title compound is trigonal with space group R3?m (centrosymmetric), Z=3, and hexagonal cell dimensions a=0.32464(2) nm, c=4.00527(14) nm and V=0.36556(3) nm3. The atom ratios Al:Si were determined by EDX, and the initial structural model was derived by the direct methods. The final structural model showed the positional disordering of one of the three types of Al/Si sites. The reliability indices were Rwp=4.45% (S=1.30), Rp=3.48%, RB=2.27% and RF=1.25%. The crystal is composed of three types of domains with nearly the same fraction, one of which has the crystal structure of space group Rm. The crystal structure of the remaining two domains, which are related by pseudo-symmetry inversion, is noncentrosymmetric with space group R3m.  相似文献   

11.
Fe-Co/CoFe2O4 nanocomposite and CoFe2O4 nanopowders were prepared by the hydrothermal method. The structure of magnetic powders were characterized by X-ray diffraction diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermal gravity analysis (TGA) and differential thermal analysis (DTA) analysis, X-ray photoelectron spectrometry (XPS), and Fourier transform infrared spectra (FTIR) techniques, while magnetic properties were determined by using a vibrating sample magnetometer (VSM) at room temperature. The effects of hydrothermal reaction conditions on magnetic properties were also discussed in details. The values of saturation magnetization (Ms) and coercive fore (Hc) for Fe-Co/CoFe2O4 nanocomposite are 113 emu/g and 1.4 kOe, respectively. Furthermore, CoFe2O4 ferrite with a single-domain critical size of 70 nm was fabricated by controlling the hydrothermal reaction conditions carefully, which presents high coercive force (ca. 4.6 kOe) and high squareness ratio (ca. 0.65). One interesting thing is Ms value of CoFe2O4 ferrite with a diameter of 40 nm is 86 emu/g which is comparable to that of the bulk counterpart.  相似文献   

12.
The crystal structure of Cr2H2(As2O7)(As4O12) has been determined by X-ray methods using single crystal diffractometer data (1,152 reflections,R=0.054, orthorhombic,Pmmn,a=1317.7 (7),b=1124.9 (6),c=494.3 (4) pm,Z=2). The crystal structure contains both diarsenate(V) and the hitherto unknown cyclo-tetraarsenate(V)-anions. The magnetic susceptibility follows theCurie-Weiss law (=3.86±0.01 B/Cr3+, =–31 K).
  相似文献   

13.
The structure, conductivity and water uptake of the oxygen-deficient perovskite-type compound Ba4Ca2Ta2O11 have been investigated. Ba4Ca2Ta2O11 crystallizes in the cryolite structure (cubic, Fm3m SG) with a = 8.4508(2) Å, under dry air. The compound can be partially hydrated up to a maximum water content of approximately 0.52 mol H2O per mol Ba4Ca2Ta2O11. In moist air, the structure symmetry becomes monoclinic (C2/m) and the temperature dependence of total conductivity shows a different behavior because of changes in transport mechanism. Three regions can be observed as a function of temperature. For the low temperature range 200–400 °C, the protonic conduction is prevailing with an activation energy EA = 0.85 eV. In the intermediate temperature range (400–600 °C), O2− anionic and protonic conductions are mixed with an activation energy EA = 0.45 eV and in the third region, for temperatures above 600 °C, O2−conduction is prevailing with an activation energy EA = 0.85 eV.  相似文献   

14.
The single-crystal X-ray structures of lanthanum, europium, and gadolinium ultraphosphate, RP5O14 (R=rare-earth) are reported herein [monoclinic, P21/c, a=8.8206(1), 8.7491(1), 8.7493(1) Å, b=9.1196(2), 8.9327(1), 8.9189(1) Å, c= 13.1714(2), 12.9768(2), 12.9717(1) Å, β=90.661(1), 90.534(1), 90.6682(3)°, respectively; Z=4; R1=0.0250, 0.0346, 0.0270, respectively]. The structures are all type (I) compounds as classified by Bagieu-Beucher and Tranqui [Bull. Soc. Fr. Miner. Cryst. 93, 505 (1970)]. The minimum RR separations are compared with all other structural reports of lanthanide ultraphosphates. Type (I) compounds have the lowest minimum RR separation, which decreases with atomic number and appears not to perturb the optical properties of any rare-earth ultraphosphate. In each case, R is surrounded exclusively by eight oxygen atoms that form a distorted square antiprism. A P–O network holds together the three-dimensional structure. The magnetic susceptibilities of neodymium, samarium, and gadolinium ultraphosphate as a function of temperature are also reported along with corresponding magnetization measurements. All compounds exhibit a paramagnetic response, following Curie's law except in the regions where crystal field splittings are significant.  相似文献   

15.
Fullerenyl radicals (FR) RC60 · and chemiluminescence (CL) are generated in the presence of O2 in C60—R3Al (R = Et, Bui) solutions in toluene (T = 298 K). The FR are formed due to the addition of the R· radical, which is an intermediate of R3Al autooxidation, to C60. Mass spectroscopy and HPLC were used to identify EtnC60Hm (n, m = 1–6), EtpC60 (p = 2–6), and dimer EtC60C60Et as stable products of FR transformations. As found by ESR, the EtC60 · radical (g = 2.0037) is also generated by photolysis of solutions obtained after interaction in the (C60— R3Al)—O2 system. In the presence of dioxygen, the FR is not oxidized but yields complexes with O2, which appear as broadening of the ESR signals. Chemiluminescence arising in the (C60—R3Al)—O2 system is much brighter (I max = 1.86·108 photon s−1 mL−1) than the known background CL (I max = 6.0·106 photon s−1 mL−1) for the autooxidation of R3Al and is localized in a longer-wavelength spectral region (λmax = 617 and 664 nm). This CL is generated as a result of energy transfer from the primary emitter 3CH3CHO* to the products of FR transformation: RnC60Hm, RpC60, and EtC60C60Et. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 205–213, February, 2007.  相似文献   

16.
Nanometer MgO samples with high surface area, small crystal size and mesoporous texture were synthesized by thermal decomposition of MgC2O4 · 2H2O prepared from solid-state chemical reaction between H2C2O4 · 2H2O and Mg (CH3COO)2 · 4H2O. Steam produced during the decomposition process accelerated the sintering of MgO, and MgO with surface area as high as 412 m2 · g−1 was obtained through calcining its precursor in flowing dry nitrogen at 520°C for 4 h. The samples were characterized by X-ray diffraction, N2 adsorption, transmission electron microscopy, thermogravimetry, and differential thermal analysis. The as-prepared MgO was composed of nanocrystals with a size of about 4–5 nm and formed a wormhole-like porous structure. The MgO also had good thermal stability, and its surface areas remained at 357 and 153 m2·g−1 after calcination at 600 and 800°C for 2 h, respectively. Compared with the MgO sample prepared by the precipitation method, MgO prepared by solid-state chemical reaction has uniform pore size distribution, surface area, and crystal size. The solid-state chemical method has the advantages of low cost, low pollution, and high yield, therefore it appears to be a promising method in the industrial manufacture of nanometer MgO. Translated from Chinese Journal of Catalysis, 2006, 27(9): 793–798 (in Chinese)  相似文献   

17.
Single crystals of SrAl2Si2 were synthesized by reaction of the elements in an aluminum flux at 1000 °C. SrAl2Si2 is isostructural to CaAl2Si2 and crystallizes in the hexagonal space group P-3m1 (90 K, a=4.1834 (2), c=7.4104 (2) Å, Z=1, R1=0.0156, wR2=0.0308). Thermal analysis shows that the compound melts at ∼1020 °C. Low-temperature resistivity on single crystals along the c-axis shows metallic behavior with room temperature resistivity value of ∼7.5 mΩ cm. High-temperature Seebeck, resistivity, and thermal conductivity measurements were made on hot-pressed pellets. The Seebeck coefficient shows negative values in entire temperature range decreasing from ∼−78 μV K−1 at room temperature to −34 μV K−1 at 1173 K. Seebeck coefficients are negative indicating n-type behavior; however, the temperature dependence is consistent with contribution from minority p-type carriers as well. The lattice contribution to the thermal conductivity is higher than for clathrate structures containing Al and Si, approximately 50 mW cm−1 K, and contributes to the overall low zT for this compound.  相似文献   

18.
Binary eutectic mixtures of early lanthanide metals and late transition metals have been explored as media for crystal growth of new intermetallic phases. A large family of R6T13−xAlxMy phases (R=La or Nd; T=Fe or Mn; M=main group elements) with the La6Co11Ga3 structure type can be crystallized from La/Ni and Nd/Fe eutectics. The tetragonal structure of these compounds features slabs of transition metal atoms capped with mixed T/Al sites and separated by layers of lanthanide ions. The growth of large crystals of the lanthanum analogs allows for the study of the anisotropic magnetic properties of the transition metal slabs. For La6Fe13−xAlxMy analogs, these order antiferromagnetically with TN strongly dependent on the Fe/Al ratio on the mixed sites. Growth of Mn analogs is reported for the first time; the transition metal slabs in La6(Mn/Ni)10Al3 phases order ferromagnetically with a TC of 200 K.  相似文献   

19.
Water-soluble conducting poly(2-(3thienyloxy)ethanesulfonic acid) (PTOESA)/V2O5 nanocomposite, (PTOESA)xV2O5, was prepared by simply mixing PTOESA with V2O5 wet gel at room temperature. XRD data showed that the interlayer spacings of (PTOESA)xV2O5 films are 14.0±1.5 Å and increased as the polymer content increased. These values are consistent with the insertion of polythiophene chains into the V2O5 layer gallery. The formation of alternative layers of PTOESA and V2O5 was further supported by depth profile SIMS analyses. Cyclic voltammograms of (PTOESA)xV2O5 film showed two pairs of redox peaks with colors varying from orange, yellowish green, green, to purple blue, depending on the stoichiometry of the nanocomposites. Moreover, a synergetic effect was observed on the electrochromic properties of these nanocomposites. It was found that the optical contrast (ΔOD) of the composites is better than those of PTOESA and V2O5 at the film thickness from 150 to 500 nm. The oxidation optical response time of (PTOESA)xV2O5 is independent of the stoichiometry and falls in between those of PTOESA and V2O5. At higher polymer content (x>0.5), the reduction optical response time of (PTOESA)xV2O5 is smaller than those of PTOESA and V2O5. Variable temperature conductivity data showed that the conductivity of (PTOESA)xV2O5 films increased as temperature increased, characteristic of thermal activated behavior, which was dominated by the interparticle contact resistance. The room-temperature conductivity of water-soluble (PTOESA)xV2O5 films was in between those of PTOESA and V2O5 xerogel and higher conductivity was found in the composite with lower polymer content. The anomalous conductivity of (PTOESA)xV2O5 with high PTOESA content may be due to the reason that the higher the polymer content, the bigger the grain size of (PTOESA)xV2O5 film as revealed with scanning electron microscopy and AFM micrographs.  相似文献   

20.
The title compound was prepared as single crystals using an aluminum flux technique. Single crystal and powder X-ray diffraction indicate that this composition crystallizes in the clathrate type-I structure, space group Pm3?n. Electron microprobe characterization indicates the composition to be Ba8−ySryAl14.2(2)Si31.8(2) (0.77<y<1.3). Single-crystal X-ray diffraction data (90 and 12 K) were refined with the Al content fixed at the microprobe value (12 K data: R1=0.0233, wR2=0.0441) on a crystal of compositions Ba. The Sr atom preferentially occupies the 2a position; mixed Al/Si occupancy was found on all framework sites. These refinements are consistent with a fully occupied framework and nearly fully occupied cation guest sites as found by microprobe analysis. Temperature dependent electrical resistivity and thermal conductivity have been measured from room temperature to 1200 K on a hot-pressed pellet. Electrical resistivity reveals metallic behavior. The negative Seebeck coefficient indicates transport processes dominated by electrons as carriers. Thermal conductivity is between 22 and 25 mW/cm K. The sample shows n-type conductivity with a maximum figure of merit, zT of 0.3 at 1200 K. A single parabolic band model predicts a five-fold increase in zT at 800 K if carrier concentration is lowered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号