首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Studies have been made of the inactivation of potato virus X (PVX), free PVX-RNA, and a phenotypically mixed virus particle composed of PVX-RNA and tobacco mosiac virus (U-1 strain) protein (PVXRNA: TMVPRO) by ultraviolet radiation of 254, 280 and 302 nm wavelengths. Rate constants and quantum yields of inactivation have been determined under conditions of photoreactivation and non-photoreactivation in H2O and D2O. The ratios of the rate constants in H2O to those in D2O obtained for PVX-RNA were greater than unity at the above three wavelengths, as was the case for PVX at 254 and 302 nm. The ratios of the rate constants were, within experimental error, equal to unity for PVXRNA:TMVPRO at all three wavelengths and for PVX at 280 nm. It is concluded that, in contrast to the situation observed with TMV and PVXRNA:TMVPRO, the behavior of the intact PVX viron upon irradiation closely approximates the behavior of free RNA in solution, on the basis of quantum yields of inactivation, photoreactivated sector, and the ratio of kinetic isotope effects in H2O and D2O.  相似文献   

2.
基于微波水热法和微乳液法合成SnO2/TiO2纳米管复合光催化剂.通过X射线衍射(XRD)、配有能量色散X射线光谱仪(EDX)的透射电镜(TEM)和电化学手段对光催化剂进行表征.以甲苯为模型污染物,考察光催化剂在紫外光(UV)和真空远紫外光(VUV)下的性能及失活再生.结果表明,SnO2/TiO2纳米管复合光催化剂形成三元异质结(锐钛矿相TiO2(A-TiO2)/金红石相TiO2(R-TiO2)、A-TiO2/SnO2和R-TiO2/SnO2异质结),促使光生电子-空穴对的有效分离,提高光催化活性.SnO2/TiO2表现出最佳的光催化性能,UV和VUV条件下的甲苯降解率均达100%,CO2生成速率(k2)均为P25的3倍左右.但由于UV光照矿化能力不足,中间产物易在催化剂表面累积.随着UV光照时间的增加,SnO2/TiO2逐渐失活,20 h后k2由138.5 mg·m-3·h-1下降到76.1 mg·m-3·h-1.利用VUV再生失活的SnO2/TiO2,过程中产生的·OH、O2-·、O(1D)、O(3P)、O3等活性物质可氧化吸附于催化剂活性位的难降解中间产物,使催化剂得以再生,12 h后k2恢复到143.6 mg·m-3·h-1.UV和VUV的协同效应使UV降解耦合VUV再生成为一种可持续的光催化降解污染物模式.  相似文献   

3.
A PHOTOSYSTEM I-PHENOSAFRANINE SOLAR CELL   总被引:2,自引:0,他引:2  
Abstract Bacteriophage λvir was inactivated when it was irradiated with near-UV light in the presence of chlorpromazine. DNA strand breakage in the treated phage was indicated by alkaline sucrose gradient centrifugation. The number of the breaks was increased with increasing fluence. Although the inactivation rate was enhanced with a decreasing salt concentration in the reaction mixture and under a nitrogen atmosphere, the number of the strand breaks was not altered in either case. Therefore, the DNA strand breakage is not a sole lethal damage in the treated phage. The addition of NaN3 repressed the inactivation and the reaction in a D2O medium enhanced the inactivation even if the reaction mixture was irradiated under anaerobic conditions. Under anaerobic conditions, the inactivation occurs presumably via a radical mechanism.  相似文献   

4.
Abstract— The mechanism for photodegradation of the ultraviolet photostabilizer 2-(2'-hydroxy-5'-methylphenyl)benzotriazole (TIN P) upon direct and dye-sensitized (singlet molecular oxygen [O2(1Δg)]-mediated) irradiation was studied. From the experimental TIN P photodegradation rate data, and low temperature (77 K) fluorescence and phosphorescence quantum yields, one can conclude that the photodegradative process involves phosphorescent states of TIN P. The open conformer of TIN P quenches O2(1Δg) by physical scavenging with a rate constant (kq) in dimethylsulfoxide of 2.8 times 106 M -1 s-1. The intramolecular hydrogen-bonded conformer does not appreciably interact with O2(1Δg). In the presence of a relatively high concentration of OH- (either 5 times 10-2 M KOH in ethanol or water at pH 13), the ionic form of TIN P (with an ionized phenol group) physically and chemically quenches O2(1Δg). The reaction rate constant ( k r) is 1 times 10 8 M -1 s-1, and the ratio k q/ k r is approximately three in alkaline aqueous media.  相似文献   

5.
Abstract— The induction of sister chromatid exchanges (SCE) and cell sensitivity in mouse myeloma cells (66.2 subclone of MPC11) by irradiation with monochromatic near-UV (365 nm) light were studied under aerobic and anaerobic conditions. Sister chromatid exchanges were studied using the fluorescence-plus-Giemsa technique, and sensitivity was determined by the ability of irradiated and nonirradiated control cells to form colonies in soft agar. Cells were found to be 16 times more sensitive to near-UV light under aerobic exposure, producing an F37 value of 7 × 104 J/m2 compared to the F37 value of 11.5 × 105 J/m2 under anaerobic conditions. The induction of SCE was also 12 times more efficient for aerobic irradiation than for anaerobic irradiation. The data suggest that the SCE-inducing potential of DNA lesions differs when near-UV irradiation is performed in the presence or absence of air. In addition, the DNA lesions responsible for lethality and also those lesions leading to SCE induction may differ under the two irradiation conditions.  相似文献   

6.
Abstract— Zn(II)phthalocyanine (ZnPc) generates O2(1Δg) with a quantum yield of ca. 0.4 upon photocxcitation at 354 or 600 nm in ethanolic solution as determined by time-resolved phosphorescence studies at 1270 nm and photooxidation experiments using 1,3-diphenylisobenzofuran (DPBF) as substrate. The quantum yield of photooxidation slightly increases upon incorporation of ZnPc into unilamellar liposomes of dipalmitoylphosphatidylcholine. Under our irradiation conditions (600 nm, 18°C, and short light exposure times), DPBF(5–50 μM) undergoes photooxidation by a pure Type II mechanism; the rate constant for the O2(1Δg) + DPBF reaction is (1.1 ±0.1) x 109 M-1 s_1 in ethanol solution and determined to be about two orders of magnitude smaller when both ZnPc and DPBF are embedded into liposomes.  相似文献   

7.
Abstract— Phthalocyanines are being studied as photosensitizers for virus sterilization of red blood cells (RBC). During optimization of the reaction conditions, we observed a marked effect of the irradiance on production of RBC damage. Using a broad-band light source (600–700 nm) between 5 and 80 mW/ cm2, there was an inverse relationship between irradiance and rate of photohemolysis. This effect was observed with aluminum sulfonated phthalocyanine (AlPcSn) and cationic silicon (HOSiPc-OSi[CH3]2 [CH2]3N+[CH3]3I- phthalocyanine (Pc5) photosensitizers. The same effect occurred when the reduction of RBC negative surface charges was used as an endpoint. Under the same treatment conditions, vesicular stomatitis virus inactivation rate was unaffected by changes in the irradiance. Reduction in oxygen availability for the photochemical reaction at high irradiance could explain the effect. However, theoretical estimates suggest that oxygen depletion is minimal under our conditions. In addition, because the rate of photohemolysis at 80 mW/cm2 was not increased when irradiations were carried out under an oxygen atmosphere this seems unlikely. Likewise, formation of singlet oxygen dimoles at high irradiances does not appear to be involved because the effect was unchanged when light exposure was in D2O. While there is no ready explanation for this irradiance effect, it could be used to increase the safety margin of RBC virucidal treatment by employing exposure at high irradiance, thus minimizing the damage to RBC.  相似文献   

8.
Abstract. Thiols and disulfides protect both φX174 phage and its isolated DNA from the lethal action of proflavine plus light. The protective ability of these compounds appears to be attributed to the -SH or the -S-S- group and the property to interact with the proflavine-phage DNA complex. The phage inactivation efficiency per proflavine bound to DNA is reduced by 50 to 30% upon addition of cysteine or cystamine. Substances that affect the lifetime of singlet oxygen modify the rate of phage photoinactivation in the presence of proflavine; the inactivation rate is decreased by N-3 and increased by D2O. Irradiation under N2 atmosphere markedly decreases the phage photosensitization by proflavine. Irradiation with monochromatic light of 440 nm is less efficient than irradiation with light of 440 nm plus 360 nm, and the difference is more pronounced in N2 than in air. These results are discussed in relation to various possible photochemical pathways.  相似文献   

9.
Abstract The production of singlet oxygen (1O2) upon irradiation of several dyes in aqueous solution at pH 9.0, was quantitatively analyzed on the basis of the appearance of stable nitroxide radicals using the amine 2,2,6,6-tetramethyl-4-piperidone as 1O2 acceptor. The dyes were checked for purity, their concentrations uniformized in terms of absorbance values and a correction factor was introduced which took into account the amount of photons absorbed. The rates of 1O2 production (in arbitrary units per min) were: 71 with rose Bengal, 70 with methylene blue, 61 with eosin Y, 18 with thiopyronine, 10 with proflavine and 9 with acridine yellow. Production of 1O2 was not observed with 9-aminoacridine, acridine orange, quinacrine and ethidium bromide. Irradiated lumichrome initiated, with the same amine, another type of reaction. The rates of two other photoreactions were also determined under similar experimental conditions by following (i) the deoxyguanosine decomposition in which case the reaction was found to be less sensitive but largely parallel to the 1O2 production and (ii) the bacteriophage ØX174 inactivation in which case the dyes showed differences in their relative efficiencies. The proteinic capsid of the phage appeared as an effective impermeability barrier towards externally generated 1O2. Moreover, some of the dyes studied intercalated into the phage DNA, a process known to favor radicalar reactions.  相似文献   

10.
Rapid Initiation of Apoptosis by Photodynamic Therapy   总被引:6,自引:1,他引:6  
Abstract— Photodynamic therapy (PDT) of neoplastic cell lines is sometimes associated with the rapid initiation of apoptosis, a mode of cell death that results in a distinct pattern of cellular and DNA fragmentation. The apoptotic response appears to be a function of both the sensitizer and the cell line. In this study, we examined photodynamic effects of several photosensitizers on murine leukemia P388 cells. Two drugs, a porphycene dimer (PcD) and tin etiopurpurin (SnET2), which localized at lysosomal sites, were tested at PDT doses that resulted in 50% loss of viability (LD50), measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. An oligonucleosomal pattern of DNA degradation was observed within 1 h after irradiation. Neither sensitizer antagonized PDT-mediated internucleosomal DNA cleavage by the other. Very high PDT doses with either agent abolished this rapid internucleosomal cleavage. Exposure of cells to high concentrations of either sensitizer in the dark also resulted in rapid DNA fragmentation to nucle-osomes and nucleosome multimers; this effect was not altered by the antioxidant 6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid (trolox), although the latter could protect cells from cytotoxicity and apoptotic effects caused by LD50 PDT doses. Photodamage from two cat-ionic sensitizers, which localized at membrane sites, caused rapid DNA cleavage to 50 kb particles; however, no further fragmentation was detected after 1 h under LD10, LD50 or LD95 PDT conditions. Moreover, the presence of either cationic sensitizer inhibited the rapid internucleosomal cleavage induced by SnET2 or PcD photodamage. The site of photodynamic action may therefore be a major determinant of the initiation and rate of progression of apoptosis.  相似文献   

11.
Abstract— The photodecomposition of sulfanilamide, 4-aminobenzoic acid and related analogs in aqueous solution has been studied with the aid of spin traps 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and CH3NO2 as well as by direct electron spin resonance techniques. The NH2 radical was trapped by DMPO during the photolysis of aqueous solutions of sulfanilamide with a Xe arc lamp. Studies with [15N1]-sulfanilamide indicated that the NH2 radical was generated by homolytic fission of the sulfur-nitrogen bond. Under the same conditions DMPO trapped the H and SO3 radicals during photolysis of sulfanic acid. Direct photolysis of sulfanilamide, sulfanilic acid and Na2SO3 in the absence of any spin trap yielded the SO3 radical. Photolysis of 4-aminobenzoic acid at pH 7 gave the H radical which was trapped by DMPO. At low pH values OH and C6H4COOH radicals were generated during the photolysis of 4-aminobenzoic acid. No eaq were trapped by CH3NO2 when acid (pH 4) and neutral aqueous solutions of sulfanilamide or 4-aminobenzoic acid were photoirradiated. The mechanism of formation of known photoproducts from the free radicals generated by sulfanilamide and 4-aminobenzoic acid during irradiation are discussed. The free radicals generated by these agents may play an important role in their phototoxic and photoallergic effects.  相似文献   

12.
The application of fluorescent whitening agents (FWAs) significantly accelerates the photoyellowing of wool and silk under exposure to the ultraviolet and visible components of sunlight <500 nm. The photochemistry involved in this process is poorly understood, particularly the role of photoproducts derived directly from the FWA itself. Hydroxylation was identified as the key initial mechanism of photodegradation leading to coloration of the solution in the irradiation of the stilbene-derived FWA 4,4'-bis(2-sulfostyryl)biphenyl (DSBP) in the presence of hydrogen peroxide (H2O2). Polyhydroxylated DSBP derivatives were implicated as critical intermediates in the formation of yellow photoproducts under these conditions. The formation of trace quantities of DSBP quinone derivatives subsequent to hydroxylation was identified as the key cause of DSBP photoyellowing. These results are the first successful characterization of yellow photoproducts resulting directly from irradiation of a stilbene-based FWA. Formation of these yellow stilbene-based FWA-derived photoproducts may occur on the surface of FWA-treated wool exposed to simulated sunlight, as previous work has shown that H2O2 is photogenerated when wet FWA-treated wool is exposed to light. These results therefore suggest that yellow FWA-derived photoproducts contribute to the accelerated photoyellowing of FWA-treated wool.  相似文献   

13.
We have studied the hydrogenase-catalyzed production of H, when either its natural electron mediator cytochrome c3 (c3) or the artificial mediator methyl viologen (MV) was reduced by illumination of proflavin (PF) in the presence of ethylenediaminetetraacetate (EDTA). The reduction rates of MV and c3 were comparable at equivalent concentrations of PF, taking into account the four redox sites of c3. However, when the concentration of c3 exceeded that of PF, the reduction rate decreased. We explain this by light quenching. In the H2-producing system, MV was more efficient than c3 as electron mediator when the initial reaction rates were compared. However, under certain conditions with MV, the rate of H2 production decreased rapidly with time of illumination, whereas with c3 it consistently remained stable. Possible reasons for this difference are discussed.
Severe inactivation of hydrogenase was observed in the absence of the primary electron donor EDTA. It is concluded that this inactivation is caused by the excited state of PF  相似文献   

14.
The aggregation of phytochrome purified from etiolated pea ( Pisum satirum cv. Alaska) and rye ( Secale cereale cv. Cougar) tissues was investigated by centrifugation and turbidimetry. Purified pea phytochrome (A669/A280= 0.88), if irradiated with red light, became precipitable in the presence of CaCl2. The precipitation upon red-light irradiation was optimal at a Ca2- or Mg2+ concentration of 10–20 m M , was greater at increased phytochrome concentration or lower pH values, and was inhibited by 0.1 M KG. The precipitated phytochrome slowly became soluble after far-red light exposure.
Turbidity of pea phytochrome solutions after red-light irradiation also increased rapidly in the presence of either Ca2+ or Mg2+. Far-red light exposure after the red light cancelled the turbidity increase. Rye phytochrome showed less turbidity increase than pea phytochrome and occurred only in the presence of Ca2+. Partially degraded pea phytochrome produced by endogenous proteases in the extract did not show the turbidity increase. Undegraded pea phytochrome also associated with microsomal fractions under conditions similar to those described above, but the partially degraded phytochrome did not.  相似文献   

15.
HYDROGEN AND OXYGEN PHOTOPRODUCTION BY TITANATE POWDERS   总被引:1,自引:0,他引:1  
Abstract— Uncoated powders of TiO2 or SrTiO3 did not produce H2 or O2 on UV irradiation of aqueous suspensions of the powders. TiO2 powders coated with platinum or rhodium photoproduced H2 on irradiation (effective wavelengths 334 and 366 nm) and the reaction was stimulated by catalytic quantities of methyl viologen. The turnover numbers for H2 production relative to TiO2 were very low suggesting that the powders were not acting catalytically. Hydrogen production was never stoichiometric with respect to TiO2 and the kinetics of H2 production were first order, not zero order as would be expected for catalytic photolysis of water. Oxygen was never detected and it appears that H2 did not arise from water photolysis but rather from oxidation of reduced sites in TiO2. A rhodium-coated SrTiO3 powder prepared photochemically produced both H2 and O2 on irradiation but the turnover numbers were very low. A Rh-SrTiO3 powder prepared thermally showed higher turnover numbers for H2 photoproduction and may be acting catalytically. However, little O2 was detected with this powder. When the turnover numbers for the different titanate powders were expressed with respect to the number of surface monolayer hydroxyl groups calculated from the surface area of the powders, some turnover numbers greater than one were obtained.  相似文献   

16.
蔡毅  郭洪辰  曹瀚  高凤翔  周庆海  王献红 《应用化学》2019,36(11):1248-1256
CO2基塑料(PPC)是通过CO2与环氧丙烷共聚所得的生物降解高分子,由于PPC的耐紫外老化性能较差,随紫外线的照射不仅PPC的相对分子质量快速下降,且其拉伸强度和断裂伸长率等力学性能也迅速降低,而农用地膜长期处于紫外线照射的环境中,因此亟待改善PPC的耐紫外老化性能。 本文设计合成了含紫外吸收基团的单体2-羟基-4(2,3-环氧丙氧基)二苯甲酮(HEB),与CO2和环氧丙烷进行三元共聚制备了耐紫外光老化的CO2共聚物(PPCH)。 在保证PPCH相对分子质量不低于5.0×104的前提下,PPCH中HEB单元的摩尔分数最高可达0.32%,相应地其玻璃化转变温度(Tg)和起始热分解温度(Td-5%)分别为26.7和216.9 ℃,拉伸强度达到30.97 MPa。 普通PPC经过240 h的紫外辐照后,其数均相对分子质量下降了67.8%,相应地其拉伸强度和断裂伸长率分别下降了10.1%和40.1%。 即使PPCH中的HEB摩尔分数仅为0.06%,经过240 h辐照后其数均相对分子质量仅下降了6.2%,相应地其拉伸强度和断裂伸长率也仅分别下降了1.7%和13.3%,证明PPCH具有较强的耐紫外老化性能,原因在于其主链含有HEB单元,对紫外光具有较好的吸收性能。 PPCH的紫外吸收性能随HEB单元在聚合物中含量的增加而增强,因此随着共聚物中引入的HEB单元含量增加,PPCH的相对分子质量和力学性能的保持率均得到了大幅度提高。 另一方面,对PPCH共聚物与相同二羟基二苯甲酮(BP)含量的PPC/BP共混物进行120 h的50 ℃热水萃取实验,PPCH显示出稳定的紫外光吸收性能,而PPC/BP共混物的紫外吸收性能随热水萃取时间的增长而快速下降,表明三元共聚反应能够有效解决普通共混物面临的小分子紫外吸收剂的外迁移问题。  相似文献   

17.
Abstract —The ultraviolet irradiation (290 nm ≤Λ≤ 390 nm) of indole, purine, indazole, acridine and quinoline in 2-methyltetrahydrofuran glass at 77 K produces trapped radicals. Two electron-paramagnetic-resonance (EPR) signals are found at 77 K during illumination, one at high magnetic field (3–25 times 10-1 T) assigned to the matrix radical and the other at low field (1.3 times 10-1 to 1–5 times 10-1 T) attributed to the lowest triplet state of the heterocyclic molecule. Quantum yields for triplet production at 77 K are 0–34 for indole, 0.51 for purine, 0.55 for indazole, 0.15 for acridine, and 0.94 for quinoline. The rate of formation of matrix radicals varies as the n Rth power of the incident light intensity, I 0nR, where 1.6 ≤ n R=≤ 2. Solvent radical yields, which depend on the light intensity, have been determined. Under the experimental conditions, no signals attributable to trapped electrons or cations have been observed. The dependence of the reciprocal value of the rise lifetime of the low field EPR signal as a function of the intensity of exposure is in accordance with a biphotonic mechanism.  相似文献   

18.
Abstract— The laser flash photolysis method has been used to determine the bimolecular rate constants for the reaction between O2(1Δ9) and several lipid-soluble and water-soluble substrates. Values for lipid-soluble substrates have been obtained using aqueous dispersions of surfactants above the critical micelle concentration with 1,3 diphenylisobenzofuran as monitor of singlet oxygen. Under these conditions the hydrophobic substances are solubilized by the micellar phase. For substrates which are water-soluble, 9,10-anthracene dipropionic acid disodium salt was used as singlet oxygen monitor. For several substances, the values obtained are comparable to the values found in homogeneous nonaqueous solutions. In cases where significant differences have been found these have been rationalized according to the individual case. The only major unexpected result concerned β-carotene which, in micellar dispersion, failed to react at all with O2(1Δ9) This may be due to multi-molecular aggregations occurring in the polar medium. The work described herein shows clearly that, under appropriate conditions, singlet oxygen kinetics can be effectively followed in aqueous solutions by time resolved methods. The indiscriminate use of β-carotene as a quencher of O2(1Δ9)in mainly aqueous media is questioned.  相似文献   

19.
Kinetic and mechanistic aspects of the vitamin B2 (riboflavin [Rf])-sensitized photo-oxidation of the imidazoline derivates (IDs) naphazoline (NPZ) and tetrahydrozoline (THZ) were investigated in aqueous solution. The process appears as important on biomedical grounds, considering that the vitamin is endogenously present in humans, and IDs are active components of ocular medicaments of topical application. Under aerobic visible light irradiation, a complex picture of competitive interactions between sensitizer, substrates and dissolved oxygen takes place: the singlet and triplet (3Rf*) excited states of Rf are quenched by the IDs: with IDs concentrations ca.  5.0 m m and 0.02 m m Rf, 3Rf* is quenched by IDs, in a competitive fashion with dissolved ground state oxygen. Additionally, the reactive oxygen species: O2(1Δg), O2•−, HO and H2O2, generated from 3Rf* and Rf •−, were detected with the employment of time-resolved methods or specific scavengers. Oxygen uptake experiments indicate that, for NPZ, only H2O2 was involved in the photo-oxidation. In the case of THZ, O2•−, HO and H2O2 were detected, whereas only HO was unambiguously identified as THZ oxidative agents. Upon direct UV light irradiation NPZ and THZ generate O2(1Δg.), with quantum yields of 0.2 (literature value, employed as a reference) and 0.08, respectively, in acetonitrile.  相似文献   

20.
Abstract— A very efficient quenching of singlet oxygen (1O2) by N3- ions has been applied to the determination of rate constants of reactions of 1O2 with various substrates (A). This determination has been made possible by choosing experimental conditions which give simple competition between N3- and A for 1O2 formed in the steady state irradiation of convenient sensitizing dye (S). The consumption of oxygen by the substrate, as followed with an oxygen analyzer, decreases in the presence of low concentrations of N3-. Using neutral air saturated aqueous solutions containing the dye phenosafranine + A and varying concentrations of N3-, the 1O2 rate constants for reactions with biological substrates and some radiation protective agents have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号