首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To obtain red luminants, MgO-GeO2 gel glasses and glass ceramics doped with manganese ions were prepared by a sol-gel method and their properties were investigated by measuring X-ray diffraction (XRD), electron spin resonance (ESR), and luminescence and excitation spectra. Under UV irradiation at 254 nm, the gel glasses and glass ceramics showed red luminescence at 620–665 nm, the intensity of which became strong with increasing the heat-treatment temperature. A glass ceramic with the composition 1.0MnO-25MgO-75GeO2 heat treated at 1000°C exhibited the strongest red luminescence at 661 nm. From the results of XRD and ESR, this luminescence is found to be due to the transition from the 4T1g to the 6A1g state of octahedrally coordinated Mn2+ ions located in MgGeO3 polycrystals. The luminescence wavelength of the glass ceramics (∼665 nm) is long compared with Eu3+-containing phosphors (612 nm), therefore the glass ceramics can be expected for red luminants.  相似文献   

2.
Chemiluminescence (CL) upon the reaction of crystalline LnI2 (Ln = Dy, Nd) with water was found. The CL emitters are the Ln3+* electron-excited ions (Dy3+*, λmax = 470, 570 nm; Nd3+*, λ = 700–1200 nm) generated by the electron transfer from the LnII ions to the H2O molecules. The identified reaction products are H2, dissolved LnI3, and insoluble LnI(OH)2 (49–51% and 48–50% yield for DyI2 and NdI2, respectively). The treatment of NdI2 with an H2O solution in THF gives the NdI2OH(thf)2·3H2O complex and hydrogen. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1890–1893, October, 2007.  相似文献   

3.
A novel uranyl complex with dimeric lacunary polyoxoanion like open-mouthed clam, Na5[(A-α-SiW9O33H3)2K{UO2(H2O)}2], was prepared and characterized by elemental analysis, infrared and ultraviolet–visible spectroscopy and single crystal X-ray diffraction. In the anion, two A-α-SiW9O3410− groups share two terminal oxygen atoms Od′ derived from removal of three corner-shared W atoms from saturated α-Keggin anion, forming a dimeric anion with an open mouth in which potassium ion and uranyl ions are coordinated. Uranium atom adopts a pentagonal bipyramidal geometry. The coordinating anions are linked by sodium ions via coordination of terminal or bridging oxygen atoms, forming two-dimensional layer arrangement. Between the layers are the hydrogen bonds from which a supramolecular architecture is created. UV–VIS spectrum gives W–O and U–O charge transfer transitions at 230–265 and 432 nm, showing the change of geometry of the polyanion and weakening of the U–O bonds of the uranyl cation. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

4.
It has been demonstrated that Co2V2O7 and InVO4 react with each other forming a new compound of the Co2InV3O11 formula, when their molar ratio is equal to 1:1, or among CoCO3, In2O3 and V2O5, mixed at a molar ratio of 4:1:3. This compound melts incongruently at the temperature of 960±5°C, depositing crystals of InVO4. It crystallizes in the triclinic system and the unit cell parameters amount to: a=0.6524(6) nm, b=0.6885(5) nm, c=1.0290(4) nm, α=96.5°, β=104.1°, γ=100.9°, Z=2. The phase equilibria being established in the Co2V2O7–InVO4 system over the whole components concentration range up to the solidus line were described.  相似文献   

5.
Nanosized ZnNb2O6 photocatalysts (band gaps ~4.0 eV) were successfully synthesized via a citrate complex method. Their particle sizes ranged from 50 to 150 nm. The result of Mott–Schottky measurement revealed that the flat-band potential of ZnNb2O6 was ca. −1.3 V versus Ag/AgCl at pH 6.6. The photocatalytic activities of the samples for the degradation of methyl orange were evaluated under UV-light (λ = 254 nm). It was found that the sample obtained at 850 °C showed the highest photocatalytic activity due to its opportune crystallinity and surface area. Furthermore, ·OH radicals were detected as the major oxidation agents responsible for the decomposition of methyl orange.  相似文献   

6.
The crystals of zinc tungstate (ZTO) are a radiation-hardened matrix and are widely used as scintillators for high energy radiation. Therefore, it is interesting to study the possibility of introducing gadolinium ions into this structure to obtain the lasing properties. In order to activate ZTO crystals by gadolinium ions, 0.5 mol.% of Gd2O3 is added to the load. High-quality large crystals of ZTO are produced. The spectra of optical transmission, luminescence excitation, and luminescence are measured at room temperature. It is shown that the introduction of gadolinium ions does not result in a shift of the main luminescence band of the ZTO crystals. The analysis of the ESR spectra and their modeling enables the calculation of spin-Hamiltonian parameters. It is shown that the observed spectrum depends on the state of Gd3+ ions with S = 7/2 and is well described by the spin-Hamiltonian parameters g x = 1.9835, g y = 1.9685, g z = 1.9688 and D = 644.88 Gs, E = 161.49 Gs. Directions of the principal values of the D tensor are determined; they reflect a strong distortion of the nearest-neighbor oxygen environment.  相似文献   

7.
New metal-rich mixed nickel-silicon and nickel-germanium chalcogenides, Ni5.68SiSe2, Ni5.46GeSe2, and Ni5.42GeTe2, were synthesized by high-temperature ceramic techniques. The X-ray diffraction study of single crystals grown from a molten flux revealed that the compounds are isostructural and crystallize in the tetragonal system (space group I4/mmm, Z = 2). These compounds are the first members of the family of M7−δEX2-type (M = Ni or Pd; E = Sn or Sb; X is chalcogen) intergrowth structures containing “light” p elements E. Resistivity measurements on pressed textured pellets showed that both selenides are anisotropic metallic conductors in the directions parallel and perpendicular to the heterometallic bond systems. The geometric criteria of stability of the intergrowth structure type under consideration are discussed. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1632–1638, September, 2007.  相似文献   

8.
Novel visible-light-activated In2O3–CaIn2O4 photocatalysts were developed in this paper through a sol–gel method. The photocatalytic activities of In2O3–CaIn2O4 composite photocatalysts were investigated based on the decomposition of methyl orange under visible light irradiation (λ > 400 nm). The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS), X-ray photoelectron spectroscopy (XPS) and UV–vis diffused reflectance spectroscopy (DRS). The results revealed that the In2O3–CaIn2O4 composite samples with different In2O3 and CaIn2O4 content can be obtained by controlling the synthesis temperature, and the composite photocatalysts extended the light absorption spectrum toward the visible region. The photocatalytic tests indicated that the composite samples demonstrated high visible-light activity for decomposition of methyl orange. The significant enhancement in the In2O3–CaIn2O4 photo-activity under visible light irradiation can be ascribed to the efficient separation of photo-generated carriers in the In2O3 and CaIn2O4 coupling semiconductors.  相似文献   

9.
Nano-structured spinel Li2Mn4O9 powder was prepared via a combustion method with hydrated lithium acetate (LiAc·2H2O), manganese acetate (MnAc2·4H2O), and oxalic acid (C2H2O4·2H2O) as raw materials, followed by calcination of the precursor at 300 °C. The sample was characterized by X-ray diffraction, scanning electron microscope, and energy-dispersive X-ray spectroscopy techniques. Electrochemical performance of the nano-Li2Mn4O9 material was studied using cyclic voltammetry, ac impedance, and galvanostatic charge/discharge methods in 2 mol L−1 LiNO3 aqueous electrolyte. The results indicated that the nano-Li2Mn4O9 material exhibited excellent electrochemical performance in terms of specific capacity, cycle life, and charge/discharge stability, as evidenced by the charge/discharge results. For example, specific capacitance of the single Li2Mn4O9 electrode reached 407 F g−1 at the scan rates of 5 mV s−1. The capacitor, which is composed of activated carbon negative electrode and Li2Mn4O9 positive electrode, also exhibits an excellent cycling performance in potential range of 0–1.6 V and keeps over 98% of the maximum capacitance even after 4,000 cycles.  相似文献   

10.
The reaction of 3,6-di-(3-methyl-pyridin-2-yI)-s-tetrazine (DMPTZ, II) with CeIII salt [Ce(NO3)3 · 6H2O] generates a new ligand, N-(3-methyl-pyridin-2-yl)-formimidoyl-(3-methyl-pyridin-2-yl) hydrazone (L), and forms a new complex: a mononuclear complex [Ce(L)(NO3)2 (H2O)3] · NO3 (III). Crystal data for III: space group P-1, with a = 0.7133(4) nm, b = 1.1139(2) nm, c = 1.4572(3) nm, α= 102.13(2)°, β= 99.81(3)°, γ= 91.10(3)°, Z = 2, V = 1113.6(7) nm3, μ = 2.123 mm−1 and F(000) = 630. L acts as a tri-dentate chelating ligand in III. There are 10 coordination sites around Ce3+ of III, which are respectively occupied by seven oxygen atoms (four from two nitrate anions and three from three H2O molecules) and three nitrogen atoms (all from L). The cerium atom and three chelating nitrogen atoms are coplanar. The mechanism of the metal assisted decomposition is discussed briefly.  相似文献   

11.
Rhombohedral hexametavanadates K4Sr(VO3)6, K4Ba(VO3)6, Rb4 Ba(VO3)6, and Cs4Ba(VO3)6 melt incongruently in the temperature range of 491 to 600°C. Cooling of peritectic melts yields mixtures of compounds typical of M2+O-M2+O-V2O5 systems, far from equilibrium and depending on the cooling kinetics. The vanadate Cs4Ba(VO3)6 undergoes reversible polymorphic transformation at 360°C. All compounds show broad-band luminescence with a maximum of the luminescence spectrum at 490–590 nm with three types of excitation. The vanadates K4Sr(VO3)6 and Rb4Ba(VO3)6 show the highest luminescence intensity at room temperature. The latter is also most efficient at liquid nitrogen temperatures. The luminescence spectra depend on the excitation of vanadates. Three hypotheses were put forward to interpret this finding. The nature of luminescence is attributed to the relaxation of electronic excitation in [VO4]3− structural tetrahedra present in the vanadates. The performance characteristics of luminophores were determined. These luminophores may be promising as X-ray luminescent screens, radioluminescence indicators, and light-emitting diode devices.  相似文献   

12.
Perovskite phases Ba3In2ZrO8 and Ba4In2Zr2O11 with the nominal concentration of structural oxygen vacancies 1/9 and 1/12, respectively, were synthesized by solid-phase and solution methods. X-ray diffraction showed cubic symmetry of both phases with the unit cell parameter a = 0.4193(2) and 0.4204(3) nm, respectively. The absence of superstructural lines resulted in the conclusion on statistical arrangement of oxygen vacancies. Thermogravimetry and mass spectrometry proved that both phases can reversibly absorb water from gas phase (pH2O = 2 × 10−2 atm) with observed correlation between the concentration of oxygen vacancies and amount of absorbed water. The total water amount was up to 0.9 mol per formula unit or, if recalculated for perovskite unit ABO3, 0.3 and 0.23 mol H2O, respectively. The temperature curves of coductivity in the atmosphere with various partial water vapor pressures (pH2O = 3 × 10−5 and 2 × 10−2 atm) showed significantly higher conductivity and lower activation energy (0.52 eV) in humid atmosphere due to proton transfer. The proton conductivity is up to 5 × 10−4 Ohm−1 cm−1 at 300°C for Ba3In2ZrO8 specimen. IR spectrometry showed that protons in the structure exist primarily in OH-groups.  相似文献   

13.
Homogeneous MnIn2S4 single crystals ∼14 mm in diameter and ∼40 mm long were grown by directional solidification of melt. For these MnIn2S4 single crystals, the composition was determined by electron probe microanalysis, structure by X-ray diffraction, and melting temperature by differential thermal analysis. Transmission spectra were studied in these single crystals, in the region of the intrinsic absorption edge within 10–300 K. The transmission spectra were used to determine the bandgap width, and it was plotted as a function of temperature. The thermal expansion of MnIn2S4 single crystals was studied dilatometrically in the range 80–700 K, and the thermal expansion coefficient was determined.  相似文献   

14.
Summary.  Single crystals of MgAl2F8(H2O)2 have been obtained under hydrothermal conditions (250°C, 14 d) from a starting mixture of AlF3 and MgAlF5(H2O)2 in a 5% (w/w) HF solution. The crystal structure has been determined and refined from single crystal data (Fmmm (#69), Z = 4, a = 7.2691(7), b = 7.0954(16), c = 12.452(2) ?, 281 structure factors, 27 parameters, R(F 2 > 2σ (F 2)) = 0.0282, wR(F 2 all) = 0.0885). The obtained crystals were systematically twinned according to (010/100/001) as twinning matrix, reflecting the pseudo-tetragonal metric. The crystal structure is composed of perowskite-type layers built of corner sharing AlF6 octahedra with an overall composition of AlF4 which are connected via common fluorine atoms of [MgF4/2(H2O)2/1] octahedra. Group-subgroup relations of MgAl2F8(H2O)2 to WO3(H2O)0.33 and to other M(II)M(III)2 F8(H2O)2 structures are briefly discussed. Above 570°C, MgAl2F8(H2O)2 decomposes under elimination of water into α-AlF3, β-AlF3, and MgF2. Received October 29, 2001. Accepted (revised) December 6, 2001  相似文献   

15.
A complex of uranyl perchlorate with imidazolidine-2-one as the molecular ligand, [UO2(Imon)4(H2O)](ClO4)2 (I), was synthesized and structurally characterized by X-ray diffraction analysis. The coordination number of the uranium atom is 7. The nearest environment of the uranyl ion includes four O atoms of the imidazolidine-2-one molecules and one O atom of the water molecule. The perchlorate anions are outer-sphere ligands. The crystals are monoclinic: space group P21/c; a = 16.294(3) Å, b = 16.135(3) Å, c = 9.987(2) Å, = 97.69 (3)°, V = 2603.0 (9) Å3, (calcd) = 2.117 g/cm3, Z = 4. The IR and luminescence spectra of the complex were recorded.Translated from Koordinatsionnaya Khimiya, Vol. 30, No. 12, 2004, pp. 919–924.Original Russian Text Copyright © 2004 by Andreev, Antipin, Budantseva, Tuchina, Serezhkina, Fedoseev, Yusov.  相似文献   

16.
Summary Specific heats on the single crystals of Sr2Nb2O7, Sr2Ta2O7 and (Sr1-xBax)2Nb2O7 were measured in a wide temperature range of 2-600 K. Heat anomalies of a λ-type were observed at the incommensurate phase transition of TINC (=495 K) on Sr2Nb2O7 and at the super-lattice phase transition of TSL (=443 K) on Sr2Ta2O7; the transition enthalpies and the transition entropies were estimated. Furthermore, a small heat anomaly was observed at the low temperature ferroelectric phase transition of TLOW (=95 K) on Sr2Nb2O7. The transition temperature TLOW decreases with increasing Ba content x and it vanishes for samples of x>2%.  相似文献   

17.
B3LYP method with the LANL2DZ basis for tin and aug-cc-pVDZ basis for carbon and hydrogen were used to obtain the equilibrium geometry of the main (with a positive charge on the tin) isomers in the C4H11Sn+ system and the transition states at their interconversion. As in the case of silicon and germanium, the cations of lighter elements of the 14th group, the most stable isomer is shown to be the tertiary ion, however, the energy of its complexes with ethane and propane is higher only by several kJ mol−1. Nevertheless, the formation of these complexes from the tertiary ion requires overcoming a rather high barrier (293 and 272 kJ mol−1, respectively). The barrier for isomerization of the secondary ion in the ethane complex is somewhat lower (222 kJ mol−1), but still is significantly greater than the energy gained at the appearance of the nucleogenic ion. The most probable transformation pathways of the nucleogenic stannylium ions are the formation of complexes with ethylene, which requires overcoming barriers of 130 and 117 kJ mol−1 for the tertiary and secondary ions, respectively.  相似文献   

18.
High quality GdTaO4:Eu3+ luminescence films have been successfully prepared through a modified sol-gel process. The films were prepared using inorganic materials as raw materials, and the thermal decomposition and UV assisted technique were introduced to improve the quality of the film and reduce the period for forming the thick film. Results of structural studies by atomic force microscopy (AFM) and X-ray diffraction (XRD) showed that the surface was smooth and the structure was monoclinic with the average grain size of about 55 nm. The emission and excitation spectra of the film were investigated. Related to the transition 5 D07 F1 and 5 D07 F2 of Eu3+ ions, the main luminescence peaks were observed at 591 and 611 nm respectively, and the luminescence peak at 345 nm was detected simultaneously related to the TaO43− emission. Transmission spectrum and decay curve of the luminescence are also presented in this paper.  相似文献   

19.
Strontium barium niobate crystals with congruent melting composition Sr0.61Ba0.39Nb2O6 (SBN-61), both nominally pure and doped with Cr3+ и Ni3+ ions, have been investigated by neutron diffraction. Different strontium and barium contents as well as their different distribution over the Sr1, of Sr2 and Ba2 crystallographic sites of SBN-61 structure, caused by introduction of dopants, have been revealed. Coordination polyhedra of cations have been established based on the analysis of cation–anion internuclear distances together with the calculation of bond-valence sums for cations, which are equal to their formal charge. It was found that the Nb1 and Nb2 atoms are located in distorted octahedra with quadfurcated (the Nb1O6 polyhedron) or bifurcated (the Nb2O6 polyhedron) vertices, and the Sr1 atoms are located in a cuboctahedron with bifurcated vertices in the base plane. Different polyhedra have been revealed for the Sr2 and Ba2 atoms: Sr2 atoms are coordinated by 15 oxygen atoms to form a highly distorted five-capped pentagonal prism, whereas Ba2 atoms are located in a highly distorted three-capped trigonal prism with a coordination number 9. Comparison of interatomic and internuclear distances, determined by X-ray and neutron diffraction analyses, respectively, allowed to reveal a highly pronounced shift of electron density in Nb1 and Sr2 polyhedra, responsible for the covalent bond and properties of crystals. Location of Cr3+ и Ni3+ dopant ions in the SBN-61 structure as well as their formal charges has been discussed.  相似文献   

20.
Fullerenyl radicals (FR) RC60 · and chemiluminescence (CL) are generated in the presence of O2 in C60—R3Al (R = Et, Bui) solutions in toluene (T = 298 K). The FR are formed due to the addition of the R· radical, which is an intermediate of R3Al autooxidation, to C60. Mass spectroscopy and HPLC were used to identify EtnC60Hm (n, m = 1–6), EtpC60 (p = 2–6), and dimer EtC60C60Et as stable products of FR transformations. As found by ESR, the EtC60 · radical (g = 2.0037) is also generated by photolysis of solutions obtained after interaction in the (C60— R3Al)—O2 system. In the presence of dioxygen, the FR is not oxidized but yields complexes with O2, which appear as broadening of the ESR signals. Chemiluminescence arising in the (C60—R3Al)—O2 system is much brighter (I max = 1.86·108 photon s−1 mL−1) than the known background CL (I max = 6.0·106 photon s−1 mL−1) for the autooxidation of R3Al and is localized in a longer-wavelength spectral region (λmax = 617 and 664 nm). This CL is generated as a result of energy transfer from the primary emitter 3CH3CHO* to the products of FR transformation: RnC60Hm, RpC60, and EtC60C60Et. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 205–213, February, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号