首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geometrically non-linear forced vibrations of a shallow circular cylindrical panel with a complex shape, clamped at the edges and subjected to a radial harmonic excitation in the spectral neighborhood of the fundamental mode, are investigated. Both Donnell and the Sanders–Koiter non-linear shell theories retaining in-plane inertia are used to calculate the elastic strain energy. The discrete model of the non-linear vibrations is build using the meshfree technique based on classic approximate functions and the R-function theory, which allows for constructing the sequences of admissible functions that satisfy given boundary conditions in domains with complex geometries; Chebyshev orthogonal polynomials are used to expand shell displacements. A two-step approach is implemented in order to solve the problem: first a linear analysis is conducted to identify natural frequencies and corresponding natural modes to be used in the second step as a basis for expanding the non-linear displacements. Lagrange approach is applied to obtain a system of ordinary differential equations on both steps. Different multimodal expansions, having from 15 up to 35 generalized coordinates associated with natural modes, are used to study the convergence of the solution. The pseudo-arclength continuation method and bifurcation analysis are applied to study non-linear equations of motion. Numerical responses are obtained in the spectral neighborhood of the lowest natural frequency; results are compared to those available in the literature. Internal resonances are also detected and discussed.  相似文献   

2.
This paper develops two related fractional trigonometries based on the multi-valued fractional generalization of the exponential function, the R-function. The trigonometries contain the traditional trigonometric functions as proper subsets. Also developed are relationships between the R-function and the new fractional trigonometric functions. Laplace transforms are derived for the new functions and are used to generate solution sets for various classes of fractional differential equations. Because of the fractional character of the R-function, several new trigonometric functions are required to augment the traditional sine, cosine, etc. functions. Fractional generalizations of the Euler equation are derived. As a result of the fractional trigonometry a new set of phase plane functions, the Spiral functions, that contain the circular functions as a subset, is identified. These Spiral functions display many new symmetries.  相似文献   

3.
Among many presumed-shape pdf approaches for modeling non-premixed turbulent combustion, the presumed β-function pdf is widely used in the literature. However, numerical integration of the β-function pdf may encounter singularity difficulties at mixture fraction values of Z = 0 or 1. To date, this issue has been addressed by few publications. The present study proposes the Piecewise Integration Method (PIM), an efficient, robust and accurate algorithm to overcome these numerical difficulties with the added benefit of improving computational efficiency. Comparison of this method to the existing numerical integration methods shows that the PIM exhibits better accuracy and greatly increases computational efficiency. The PIM treatment of the β-function pdf integration is first applied to the Burke–Schumann solution in conjunction with the k − ε turbulence model to simulate a CH4/H2 bluff-body turbulent flame. The proposed new method is then applied to the same flow using a more complex combustion model, the laminar flamelet model. Numerical predictions obtained by using the proposed β-function pdf integration method are compared to experimental values of the velocity field, temperature and species mass fractions to illustrate the efficiency and accuracy of the present method.  相似文献   

4.
This paper develops two related fractional trigonometries based on the multi-valued fractional generalization of the exponential function, the R-function. The trigonometries contain the traditional trigonometric functions as proper subsets. Also developed are relationships between the R-function and the new fractional trigonometric functions. Laplace transforms are derived for the new functions and are used to generate solution sets for various classes of fractional differential equations. Because of the fractional character of the R-function, several new trigonometric functions are required to augment the traditional sine, cosine, etc. functions. Fractional generalizations of the Euler equation are derived. As a result of the fractional trigonometry a new set of phase plane functions, the Spiral functions, that contain the circular functions as a subset, is identified. These Spiral functions display many new symmetries.  相似文献   

5.
Energy transfer between subsystems coupled by standard light hereditary element in hybrid system is very important for different engineering applications, especially for dynamical absorption. An analytical study of the energy transfer between coupled linear and nonlinear oscillators in the free vibrations of a viscoelastically connected double-oscillator system as a new hybrid nonlinear system with two and half degrees of freedom is pointed out. The analytical study shows that the viscoelastic–hereditary connection between oscillators causes the appearance of like two-frequency regimes of subsystem's vibrations and that the energy transfer between subsystems appears. The Lyapunov exponents corresponding to each of two eigenmodes of the hybrid system, as well as to the subsystems are obtained and expressed by using energy of the corresponding eigentime components. The Lyapunov exponents are measures of the vibration processes stability in the hybrid system and in component subsystem vibrations. In Honor of Giuseppe Rega and Fabrizio Vestroni on the Occasion of their 60th Birthday.  相似文献   

6.
G. G. Sheng  X. Wang  G. Fu  H. Hu 《Nonlinear dynamics》2014,78(2):1421-1434
This paper reports the result of an investigation on the nonlinear vibrations of functionally graded cylindrical shell surrounded by an elastic foundation, based on Hamilton’s principle, von Kármán nonlinear theory, and the first-order shear deformation theory. Material properties are assumed to be temperature dependent. The surrounding elastic medium is modeled as Winkler foundation model, Pasternak foundation model, and nonlinear foundation model. Galerkin’s method is utilized to convert the governing partial differential equations to nonlinear ordinary differential equations with quadratic and cubic nonlinearities. Considering the primary resonance case, the method of multiple scales is used to study the frequency response of nonlinear vibrations and the softening/hardening behavior. Parametric effects on the nonlinear vibrations are investigated.  相似文献   

7.
8.
In a celebrated theorem H?lder proved that the Euler Γ-function is differential transcendental, i.e. Γ(z) is not a solution of any (non-trivial) algebraic ordinary differential equation with coefficients that are complex numbers; and we extend his methods to the Riemann ζ-function. Moreover, we conjecture that Γ and ζ are differential independent, i.e. Γ(z) is not a solution of any such algebraic differential equation—even allowing coefficients that are differential polynomials in ζ(z). However, we are able to demonstrate only the partial result that Γ(z) and ζ(sin 2πz) are differential independent.  相似文献   

9.
In performance based earthquake engineering, it is important to accurately predict the seismic demand and capacities of structures. One recent estimation method is incremental dynamic analysis (IDA), which requires a series of nonlinear response history analyses (RHA) of the structure under various ground motions, each scaled to multiple levels of intensity, selected to cover entire range of structural response from elasticity, to yield and finally global dynamic instability. The implementation of IDA requires intensive computation and detailed knowledge of the nonlinear RHA of structures. In response to the complexity of IDA, an approximate method based on modal pushover analysis (MPA-based IDA) was developed. In MPA-based IDA, seismic demands are computed using the nonlinear RHA of the equivalent SDF systems instead of using nonlinear RHA of MDF systems. The objective of this study is to develop a simpler MPA-based IDA procedure that can avoid nonlinear RHA of equivalent SDF systems. For this purpose, MPA-based IDA employs the empirical equation of the inelastic displacement ratio (C R ), defined as the ratio of peak displacement of the inelastic SDF system to that of the corresponding elastic SDF system given the strength ratio R, and that of the collapse strength ratio (R c), which is the ratio of collapse intensity to yield strength. The proposed procedure is verified by comparing the seismic demands and capacities of 6-, 9-, and 20-story steel moment frames as determined by the proposed method and exact IDA.  相似文献   

10.

This paper derives nonlinear plate equations for electroelastic crystals using both power series and trigonometric expansions of the three-dimensional equations. Unlike existing theories, material nonlinearities are included to cubic order in the gradients of the field variables, which allows Duffing behavior to be properly modeled. Moreover, inconsistencies in existing nonlinear power series expansions are revealed, and a consistent expansion is given. Next, a Galerkin truncation is applied to the variational formulation of the plate equations to give a very general reduced-order model of its dynamics near primary resonance. By comparison with the Galerkin discretization of the exact equations, nonlinear correction factors are derived for both power series and trigonometric expansions. Numerical continuation of the resulting nonlinear ODEs demonstrates the effect of lateral eigenmodes on the Duffing behavior of the frequency response. Both power series and trigonometric expansions produce results in close agreement. In the limit of purely thickness vibrations, the nonlinear plate equations reduce to the Galerkin truncation of the exact equations.

  相似文献   

11.
A crucial step of algorithms allowing the study of discrete mechanical system vibrations is the determination of eigenmodes and eigenvalues. The accuracy of the results is of great importance because the stability study of the system depends on them. Eigenvalues can be found with a very good precision, however the eigenmodes determination is awkward: their direction could present significant instabilities. We proposed a method which avoids the necessity of doing eigenmodes research and so the attendant instabilities. It is based on Le Verrier–Souriau algorithm usually reserved for the resolution of linear algebraic systems.  相似文献   

12.
The exact mode shapes of linear vibrations of a shallow shell rectangular in the horizontal projection with two freely supported opposite edges are obtained. These shapes are used to construct a discretemodel of vibrations of a shallow shell in geometrically nonlinear deformation. The harmonic balance method is used to study the free and forced nonlinear vibrations under internal resonance. The Lyapunov stability of the obtained periodic vibrations is analyzed.  相似文献   

13.
Fracture of concrete is analyzed by combining the resistance curve (R-curve) approach with linearly elastic solutions for the energy release rate resulting from the quasi-static crack model of Wnuk, analogous to the D-BCS model of a stationary crack used in describing quasi-brittle fracture in metals. The R-curve, representing the crack length dependence of the energy consumed per unit fracture extension, is calculated using the concept of the energy separation rate associated with a finite crack growth steps. To simplify calculations, the tensile stress transmitted across the nonlinear zone ahead of the fracture front is assumed to be uniformly distributed over the entire nonlinear zone, even though in reality it must be a gradually declining stress resulting in strain-softening; and an infinite elastic medium loaded at infinity is assumed. These assumptions permit an easy solution with the help of Green's function for an infinite elastic medium. Application to bodies of finite size then requires assuming the nonlinear zone (fracture process zone) to be negligible with regard to specimen dimensions, crack length and ligament length. Even though this assumption is not always realistic, the end results, which are of practical importance, appear reasonable. The analysis leads to a nonlinear first-order ordinary differential equation for the R-curve, which is integrated numerically. The R-curves calculated in this manner can be closely fitted to data from previous fracture tests. Only two parameters, characterizing the initial and the final lengths of the nonlinear zone, need to be adjusted to test data.  相似文献   

14.
Flow pattern analysis of linear gradient flow distribution   总被引:1,自引:0,他引:1  
This paper uses the Oseen transformation to solve the differential equations governing motion of the vertical linear gradient flow distribution close to a wall surface. The Navier-Stokes equations are used to consider the inertia term along the flow direction. A novel contour integral method is used to solve the complex Airy function. The boundary conditions of linear gradient flow distribution for finite problems are determined. The vorticity function, the pressure function, and the turbulent velocity profiles are provided, and the stability of particle trajectories is studied. An Lx-function form of the third derivative circulation is used to to simplify the solution. Theoretical results are compared with the experimental measurements with satisfactory agreement.  相似文献   

15.
The free vibrations of flexible shallow shells with complex planform are studied. To analyze the natural frequencies and modes of linear vibrations, the R-function and Rayleigh–Ritz methods are used. A discrete model is obtained using the Bubnov–Galerkin method. The nonlinear vibrations are studied by combining the nonlinear normal mode method and the multiple-scales method. Skeleton curves of natural vibrations are drawn  相似文献   

16.
We present a novel approach to wall modeling for the Reynolds‐averaged Navier‐Stokes equations within the discontinuous Galerkin method. Wall functions are not used to prescribe boundary conditions as usual, but they are built into the function space of the numerical method as a local enrichment, in addition to the standard polynomial component. The Galerkin method then automatically finds the optimal solution among all shape functions available. This idea is fully consistent and gives the wall model vast flexibility in separated boundary layers or high adverse pressure gradients. The wall model is implemented in a high‐order discontinuous Galerkin solver for incompressible flow complemented by the Spalart‐Allmaras closure model. As benchmark examples, we present turbulent channel flow starting from Reτ=180 and up to Reτ=100000 as well as flow past periodic hills at Reynolds numbers based on the hill height of ReH=10595 and ReH=19000.  相似文献   

17.
Analysis of instantaneous dynamic states of vibrated granular materials   总被引:1,自引:0,他引:1  
The behavior of granular materials subjected to continuous vertical vibrations is dependent on a variety of factors, including how energetically the containment vessel is shaken as well as particle properties. Motivation for the investigation reported here is based on phenomenon in which bulk solids attain an increase in density upon relaxation. The results of a detailed, discrete element study designed to examine the dynamic state of a granular material is presented, in which particles are represented as inelastic, frictional spheres. The phase in which the assembly finds itself immediately before vibrations are stopped is quantified by computing depth profiles of the translational energy ratio R in conjunction with profiles of solids fraction ν and granular temperature T. The use of particles that are more frictional tends to hinder or delay thermalization, while particle restitution coefficient plays a role when the flow is collision dominated. The structure before vibrations are applied plays an important role in determining the depth profiles and the phase pattern only at low accelerations. On the other hand, large accelerations can easily dislodge the poured configuration very quickly so that the initial condition is not major factor in the phase pattern.  相似文献   

18.
Three empirical formulas are developed to predict the thermal conductivities of fiber-reinforced composite laminates (FRCL) and its constituents. The inherent two or three-dimensional problem that is common in composites is simplified to a one-dimensional problem. The validity of the models is verified through finite element analysis. This method utilizes the parallel and series thermal models of composite walls. The models are tested at different fiber-to-resin volume ratios (30:70–75:25) and various fiber-to-resin thermal conductivity ratios (0.2–5). The predicted thermal conductivity of the fiber can be accurately predicted throughout the spectrum via two models. The first model is a first-order formula (R 2 = 0.94) while the second model is a second-order formula (R 2 = 0.976). These two models can be used to predict the fiber thermal conductivity based on the easily measured resin and laminate values. A third model to predict the overall laminate thermal conductivity is introduced. The thermal conductivity of the composite panel is predicted with very high accuracy (R 2 = 0.995). The thermal conductivity predicted via the use of these models has an excellent agreement with the experimental measurements. Another use of these models is to determine the fiber-to-resin volume ratio (if all thermal conductivities of fiber, resin and laminate are known).  相似文献   

19.
In this paper we analyze the vibrations of nonlinear structures by means of the novel approach of isogeometric finite elements. The fundamental idea of isogeometric finite elements is to apply the same functions, namely B-Splines and NURBS (Non-Uniform Rational B-Splines), for describing the geometry and for representing the numerical solution. In case of linear vibrational analysis, this approach has already been shown to possess substantial advantages over classical finite elements, and we extend it here to a nonlinear framework based on the harmonic balance principle. As application, the straight nonlinear Euler–Bernoulli beam is used, and overall, it is demonstrated that isogeometric finite elements with B-Splines in combination with the harmonic balance method are a powerful means for the analysis of nonlinear structural vibrations. In particular, the smoother k-method provides higher accuracy than the p-method for isogeometric nonlinear vibration analysis.  相似文献   

20.
Taylor-Hood finite elements provide a robust numerical discretization of Navier-Stokes equations (NSEs) with arbitrary high order of accuracy in space. To match the accuracy of the lowest degree Taylor-Hood element, we propose a very efficient time-stepping methods for unsteady flows, which are based on high-order semi-implicit backward difference formulas (SBDF) and the inclusion of grad -div term in the NSE. To mitigate the impact on the numerical accuracy (in time) of the extrapolation of the nonlinear term in SBDF, several variants of nonlinear extrapolation formulas are investigated. The first approach is based on an extrapolation of the nonlinear advection term itself. The second formula uses the extrapolation of the velocity prior to the evaluation of the nonlinear advection term as a whole. The third variant is constructed such that it produces similar error on both velocity and pressure to that with fully implicit backward difference formulas methods at a given order of accuracy. This can be achieved by fixing one-order higher than usually done in the extrapolation formula for the nonlinear advection term, while keeping the same extrapolation formula for the time derivative. The resulting truncation errors (in time) between these formulas are identified using Taylor expansions. These truncation error formulas are shown to properly represent the error seen in numerical tests using a 2D manufactured solution. Lastly, we show the robustness of the proposed semi-implicit methods by solving test cases with high Reynolds numbers using one of the nonlinear extrapolation formulas, namely, the 2D flow past circular cylinder at Re=300 and Re = 1000 and the 2D lid-driven cavity at Re = 50 000 and Re = 100 000. Our numerical solutions are found to be in a good agreement with those obtained in the literature, both qualitatively and quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号