首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在有效质量近似理论下,利用转移矩阵和有效垒高方法研究了有限磁场下含结构缺陷的多组分超晶格中局域电子态的性质.在考虑各组分层有效质量的失配时,外加磁场会导致磁耦合效应的出现.磁耦合效应不仅引起局域电子能级的量子化,并且随着朗道指数或磁场强弱的变化,局域能级及其局域程度都会发生显著移动,特别是对高能区域的局域电子态影响更大.此外,还计算了电子输运系数,讨论了含结构缺陷的三组分超晶格中局域电子能级与输运谱透射禁区中的共振透射峰的关系,发现两者之间有着很好的对应关系,为相应的实验研究提供了依据. 关键词: 超晶格 局域电子态 磁场  相似文献   

2.
The role of bulk and edge currents in a two-dimensional electron gas under the conditions of the integer quantum Hall effect (IQHE) was studied by means of an inductive coupling to Hall bar geometry. From this study we conclude that the extended states at the bulk of the sample below the Fermi energy are capable of carrying a substantial amount of Hall current. For Hall bar geometry sample with a back gate we demonstrated that injected current can be pushed from one edge to another by reversing the direction of the external magnetic field.  相似文献   

3.
When a mesoscopic two dimensional four-terminal Hall cross bar with spin-orbit interaction (SOI) is subjected to a perpendicular uniform magnetic field B, both integer quantum Hall effect (IQHE) and mesoscopic spin Hall effect (MSHE) may exist when disorder strength W in the sample is weak. We have calculated the low field "phase diagram" of MSHE in the (B,W) plane for disordered samples in the IQHE regime. For weak disorder, MSHE conductance G(sH) and its fluctuations rms(G(sH)) vanish identically on even numbered IQHE plateaus, they have finite values on those odd numbered plateaus induced by SOI, and they have values G(sH)=1/2 and rms(G(sH))=0 on those odd numbered plateaus induced by Zeeman energy. At larger disorders, the system crosses over into a regime where both G(sH) and rms(G(sH)) are finite, a chaotic regime, and finally a localized regime.  相似文献   

4.
We theoretically study the electronic states in graphene ribbons which are strongly affected by the edge states, the peculiar non-bonding molecular orbitals localized along the zigzag edges of the ribbons. New kinds of edge localized electronic states with spin and charge polarizations are found in the mean field solutions of the extended Hubbard model with onsite and nearest-neighbor Coulomb repulsions. These novel states appear due to the interplay between the edge states and the Fermi instabilities. We also examine the competition between the charge polarized state and the spin polarized state to draw a phase diagram depending on Coulomb parameters. The results obtained by the mean field calculations with the extended Hubbard model modified to include Coulomb integrals provide useful insights to understand and functionalize the nanoscale materials.  相似文献   

5.
Wave-function and interaction effects in the addition spectrum of a Coulomb-blockaded many-electron quantum ring are investigated as a function of asymmetrically applied gate voltages and magnetic field. Hartree and exchange contributions to the interaction are quantitatively evaluated at a crossing between states extended around the ring and states which are more localized in one arm of the ring. A gate tunable singlet-triplet transition of the two uppermost levels of this many-electron ring is identified at zero magnetic field.  相似文献   

6.
We study the localization properties of electrons in a two-dimensional system in a random magnetic field B(r)=B0+δB(r) with the average B0 and the amplitude of the magnetic field fluctuations δB. The localization length of the system is calculated by using the finite-size scaling method combined with the transfer-matrix technique. In the case of weak δB, we find that the random magnetic field system is equivalent to the integer quantum Hall effect system, namely, the energy band splits into a series of disorder broadened Landau bands, at the centers of which states are extended with the localization length exponent ν=2.34±0.02. With increasing δB, the extended states float up in energy, which is similar to the levitation scenario proposed for the integer quantum Hall effect.  相似文献   

7.
We have observed the quantum Hall effect in a high mobility two-dimensional electron gas to filling factors up to 80 at 0.3 K. This demonstrates the presence of both localized and extended states at low field, and explains the failure of the standard semi-classical analysis of Shubnikov–de Haas (SdH) oscillations in this regime. We go on to derive a general expression for the conductivity due to rectangular bands of extended states, and show that the observed temperature dependence of the SdH oscillations is consistent with this picture. An analysis of the oscillations using this expression reveals the predicted levitation of the extended states as the magnetic field is reduced.  相似文献   

8.
S. S. Murzin 《JETP Letters》2009,89(6):298-300
It has been pointed out that, according to the two-parameter scaling theory, the magnetic-field position of the phases of the integer quantum Hall effect (IQHE) at ωcτ ? 1 is not determined by the filling factor ν = nh/eB. The position of the IQHE phases is given by the bare Hall conductivity σ xy 0 . In this regard, it has been shown that the diagonal resistivity in the magnetic field measured by Sakr et al. [Phys. Rev. B 64, 161308 (2001)] does not exhibit transitions between the σ xy = 3, 4 and 6 IQHE states on the one hand and the dielectric state on the other hand in contrast to the assertion by Sakr et al.  相似文献   

9.
We study the competition between the long-range Coulomb interaction, disorder scattering, and lattice effects in the integer quantum Hall effect (IQHE) in graphene. By direct transport calculations, both nu=1 and nu=3 IQHE states are revealed in the lowest two Dirac Landau levels. However, the critical disorder strength above which the nu=3 IQHE is destroyed is much smaller than that for the nu=1 IQHE, which may explain the absence of a nu=3 plateau in recent experiments. While the excitation spectrum in the IQHE phase is gapless within numerical finite-size analysis, we do find and determine a mobility gap, which characterizes the energy scale of the stability of the IQHE. Furthermore, we demonstrate that the nu=1 IQHE state is a Dirac valley and sublattice polarized Ising pseudospin ferromagnet, while the nu=3 state is an xy plane polarized pseudospin ferromagnet.  相似文献   

10.
We describe theoretically multiply-charged excitons interacting with a continuum of delocalized states. Such excitons exist in relatively shallow quantum dots and have been observed in recent optical experiments on InAs self-assembled dots. The interaction of an exciton and delocalized states occurs via Auger-like processes. To describe the optical spectra, we employ the Anderson-like Hamiltonian by including the interaction between the localized exciton and delocalized states of the wetting layer. In the absence of a magnetic field, the photoluminescence line shapes exhibit interference effects. When a magnetic field is applied, the photoluminescence spectrum demonstrates anticrossings with the Landau levels of the extended states. We show that the magnetic-field behavior of charged excitons is very different to that of diamagnetic excitons in three and two-dimensional systems.  相似文献   

11.
Recent low-temperature scanning-force-microscopy experiments on narrow Hall bars, under the conditions of the integer quantum Hall effect (IQHE) and its breakdown, have revealed an interesting position dependence of the Hall potential, which changes drastically with the applied magnetic field and the strength of the imposed current through the sample. The present paper shows, that inclusion of Joule heating into an existing self-consistent theory of screening and magneto-transport, which assumes translation invariant Hall bars with a homogeneous background charge due to doping, can explain the experimental results on the breakdown of the IQHE in the so called edge-dominated regime.  相似文献   

12.
The conductance across a quantum dot can be influenced by levels localized in the dot and having little hybridization with the conduction channel. Fano lineshapes arising in resonant transmission measurements, imply interference between the localized and extended states. By applying a magnetic orthogonal field, the total spin of a quantum dot can be tuned. Electron correlations drive the dot through level crossings to higher spin states. Such crossings can give rise to Kondo conductance when the dot is at Coulomb blockade close to a magnetic field induced level degeneracy. In a previous work [P. Stefański, A. Tagliacozzo, B.R. Bulka, Phys. Rev. Lett. 93 (2004) 186805] we have shown that a Fano-like pattern also appears when the continuum of the conduction states originates from a broad Kondo resonance. A bunch of localized core levels, weakly coupled to the Kondo resonance, imprints the broad Kondo peak with Fano lineshapes. A signature of the presence of correlations in the quantum dot is discussed.  相似文献   

13.
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.  相似文献   

14.
Analytical solutions of electronic wave functions in symmetric quantum ring (QR), quantum wire (QWR) and quantum dots (QD) structures are given using a parabolic coordinates system. The solutions for low-energy states are combinations of Bessel functions. The density of states of perfect 1D QR and QWR are shown to be equivalent. The continuous evolution from a 0D QD to a perfect 1D QR can be precisely described. The sharp variation of electronic properties, related to the build up of a potential energy barrier at the early stage of the QR formation, is studied analytically. Paramagnetic and diamagnetic couplings to a magnetic field are computed for QR and QD. It is shown theoretically that magnetic field induces an oscillation of the magnetization in QR.  相似文献   

15.
16.
The optical joint densities of states of three InGaN/GaN-based light-emitting diodes with different emission wavelengths (violet, blue and green) operated at various currents were investigated. The results indicate that the blueshift of the emission with increasing current is related to the variation in optical joint density of states. Thus, the blueshift is ascribed to the screening of the piezoelectric field by carriers. A tail at the low-energy end of the density of states, corresponding to localized states, was found, and the presence of these tails broadens the spectra of the devices.  相似文献   

17.
The random Ising chain is a very simple model with a large number of metastable states. Simple analytical calculation of the relaxation of energy and magnetization is presented. The effect of a nonzero magnetic field is discussed qualitatively. The slow relaxation in this simple model resembles that observed in spin glasses. A weak magnetic field can produce rather strong effects. The magnetization is shown to be a nonanalytic function of the field. The field also greatly alters the metastability characteristics.  相似文献   

18.
The number of electronic states in a quantum-well laser diode under a perpendicular, uniform and time-independent magnetic field is considered as a function of the electronic energy. Within this framework, the energy-averaged number of states is calculated over a suitable energy range. In particular, an expression for the above average number is given when the magnetic field is relatively weak and the devices are assumed to be quasi-one-dimensional.  相似文献   

19.
The onset of spin-glass freezing in dilute Ising systems with long-range interactions is investigated with the use of numerical simulations. We show that taking pair correlations explicitly into account results in the renormalization of the interaction matrix and suppression of the density of localized states compared with conventional mean field theory. Application of the theory to the RKKY interaction in the dilute limit raises the question of the appropriate boundary eigenvalue of the effective interaction matrix that separates localized and extended states. We identify the onset of spin-glass freezing with the temperature T g at which this boundary eigenvalue is equal to one. Numerical simulations reproduces the linear concentration dependence of T g in the very dilute limit, in agreement with scaling relations, and show a significant improvement over the conventional mean-field theory in the value obtained for the freezing temperature.  相似文献   

20.
The spin configuration of the ground state of a two-dimensional electron system is investigated for different FQHE states from an analysis of circular polarization of time-resolved luminescence. The method clearly distinguishes between fully spin polarized, partially spin polarized and spin unpolarized FQHE ground states. We demonstrate that FQHE states which are spin unpolarized or partially polarized at low magnetic fields become fully spin polarized at high fields. Temperature dependence of the spin polarization reveals a nonmonotonic behavior at . At and the electron system is found to be fully spin polarized. This result does not indicate the existence of any skyrmionic excitations in high magnetic field limit. However, at the observed spin depolarization of electron system at and becomes broader for lower magnetic fields, so that full spin polarization remains only in a small vicinity of . Such a behavior could be considered as a precursor of skirmionic depolarization, which would dominate for smaller ratios between Zeeman and Coulomb energies.We demonstrate that the spin polarization of 2D-electron system at and can be strongly affected by hyperfine interaction between electrons and optically spin-oriented nuclears. This result is due to the fact that hyperfine interaction can both enhance and suppress effective Zeeman splitting in fixed external magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号