首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of phenylalanine (phe) oxidation by permanganate has been investigated in absence and presence of cetlytrimethylammonium bromide (CTAB) using conventional spectrophotometric technique. The rate shows first- and fractional-order dependence on [MnO4] and [phe] in presence of CTAB. At lower values of [CTAB] (≤10.0 × 10−4 mol dm−3), the catalytic ability of CTAB aggregates are strong. In contrast, at higher values of [CTAB] (≥10.0 × 10−4 mol dm−3), the inhibitory effect was observed in absence of H2SO4. We find that anions (Br, Cl and NO3) in the form of sodium salts are strong inhibitors for the CTAB catalyzed oxidation. Kinetic and spectrophotometric evidences for the formation of an intermediate complex and an ion-pair complex between phe and MnO4, CTAB and MnO4, respectively, are presented. A mechanism consistent with kinetic results has been discussed. Complex formation constant (Kc) and micellar binding constant (Ks) were calculated at 30 °C and found to be Kc = 319 mol−1 dm−3 and Ks = 1127 mol−1 dm−3, respectively.  相似文献   

2.
Dynamic interfacial tension between aqueous solutions of 3-dodecyloxy-2-hydroxypropyl trimethyl ammonium bromide (R12HTAB) and n-hexane were measured using the spinning drop method. The effects of the R12HTAB concentration (the concentration below the CMC) and temperature on the dynamic interfacial tension have been investigated; the reason of the change of dynamic interfacial tension with time has been discussed. The effective diffusion coefficient, Da, and the adsorption barrier, a, have been obtained from the experimental data using the extended Word–Tordai equation. The results show that the dynamic interfacial tension becomes smaller while a becomes higher with increasing R12HTAB concentration in the bulk aqueous phase. Da decreases from 5.56 × 10−12 m−2 s−1 to 0.87 × 10−12 m−2 s−1 while a increases from 5.41 kJ mol−1 to 7.74 kJ mol−1 with the increase of concentration in the bulk solution of R12HTAB from 0.5 × 10−3 mol dm−3 to 4 × 10−3 mol dm−3. Change of temperature affects the adsorption rate through altering Da and a. The value of Da increases from 5.56 × 10−12 m−2 s−1 to 13.98 × 10−12 m−2 s−1 while that of a decreases from 5.41 kJ mol−1 to 5.07 kJ mol−1 with temperature ascending from 303 K to 323 K. The adsorption of surfactant from the bulk phase into the interface follows a mixed diffusion–activation mechanism, which has been discussed in the light of interaction between surfactant molecules, diffusion and thermo-motion of molecules.  相似文献   

3.
Degradation of polyoxyethylene chain of non-ionic surfactant (TritonX-100) by chromium(VI) has been studied spectrophotometrically under different experimental conditions. The reaction rate bears a first-order dependence on the [Cr(VI)] under pseudo-first-order conditions, [TritonX-100]  [Cr(VI)] in presence of 1.16 mol dm−3 perchloric acid. The observed rate constant (kobs) was 3.3 × 10−4 to 3.5 × 10−4 s−1 and the half-life (t1/2) was 33–35 min for chromium(VI). The effects of total [TritonX-100] and [H+] on the reaction rate were determined. Reducing nature of non-ionic TritonX-100 surfactant is found to be due to the presence of –OH group in the polyoxyethylene chain. It was observed that monomeric and non-ionic micelles of TritonX-100 were oxidized by chromium(VI). When [TritonX-100] was less than its critical micelle concentration (cmc) the kobs values increased from 0.76 × 10−4 to 1.5 × 10−4 s−1. As the [TritonX-100] was greater than the cmc, the kobs values increases from 2.1 × 10−4 to 8.2 × 10−4 s−1 in presence of constant [HClO4] (1.16 mol dm−3) at 40 °C. A comparison was made of the oxidative degradation rates of TritonX-100 with different metal ion oxidants. The order of the effectiveness of different oxidants was as follows: permanganate > diperiodatoargentate(III) > chromium(VI) > cerium(IV).  相似文献   

4.
Upon addition of permanganate to a solution of tryptophan (Trp), yellow-brown color species appears within the time of mixing of tryptophan in absence and presence of cetyltrimethylammonium bromide (CTAB), which was stable for some days. Spectroscopic and kinetic evidences suggest the formation of water-soluble colloidal MnO2 as the most stable reduction product of MnO4. Carbon dioxide and ammonia are not formed as the oxidation products. Carbon–carbon double bond of indole moiety of Trp is responsible for the fast reduction of permanganate. Cetyltrimethylammonium bromide catalyses the permanganate oxidation of Trp with a rate enhancement of ca. 200-fold. Sub- and postmicellar catalytic effect of CTAB ascribed to the association/incorporation/solubilization of both reactants (MnO4 and Trp) with the CTAB aggregates and into the Stern layer of cationic micelles. Quantitative kinetic analysis of the rate constant–[CTAB] data has been performed on the basis of modified pseudo-phase model of the micelles. A comparison was made of the oxidation rates of different amino acids by permanganate. The order of the effectiveness was as follows: tryptophan  tyrosine  phenylalanine.  相似文献   

5.
The photochemical, photophysical and photobiological studies of a mixture containing cis-[Ru(H-dcbpy)2(Cl)(NO)] (H2-dcbpy = 4,4′-dicarboxy-2,2′-bipyridine) and Na4[Tb(TsPc)(acac)] (TsPc = tetrasulfonated phthalocyanines; acac = acetylacetone), a system capable of improving photodynamic therapy (PDT), were accomplished. cis-[Ru(H-dcbpy)2(Cl)(NO)] was obtained from cis-[Ru(H2-dcbpy)2Cl2]·2H2O, whereas Na4[Tb(TsPc)(acac)] was obtained by reacting phthalocyanine with terbium acetylacetonate. The UV–Vis spectrum of cis-[Ru(H-dcbpy)2(Cl)(NO)] displays a band in the region of 305 nm (λmax in 0.1 mol L−1 HCl)(π–π*) and a shoulder at 323 nm (MLCT), while the UV–Vis spectrum of Na4[Tb(TsPc)(acac)] presents the typical phthalocyanine bands at 342 nm (Soret λmax in H2O) and 642, 682 (Q bands). The cis-[Ru(H-dcbpy)2(Cl)(NO)] FTIR spectrum displays a band at 1932 cm−1 (Ru–NO+). The cyclic voltammogram of the cis-[Ru(H-dcbpy)2(Cl)(NO)] complex in aqueous solution presented peaks at E = 0.10 V (NO+/0) and E = −0.50 V (NO0/−) versus Ag/AgCl. The NO concentration and 1O2 quantum yield for light irradiation in the λ > 550 nm region were measured as [NO] = 1.21 ± 0.14 μmol L−1 and øOS = 0.41, respectively. The amount of released NO seems to be dependent on oxygen concentration, once the NO concentration measured in aerated condition was 1.51 ± 0.11 μmol L−1 The photochemical pathway of the cis-[Ru(H-dcbpy)2(Cl)(NO)]/Na4[Tb(TsPc)(acac)] mixture could be attributed to a photoinduced electron transfer process. The cytotoxic assays of cis-[Ru(H-dcbpy-)2(Cl)(NO)] and of the mixture carried out with B16F10 cells show a decrease in cell viability to 80% in the dark and to 20% under light irradiation. Our results document that the simultaneous production of NO and 1O2 could improve PDT and be useful in cancer treatment.  相似文献   

6.
The standard partial molar entropy of the aqueous tetrabutylammonium cation, not known previously, has now been obtained, based on the molar entropy of two of its crystalline salts, the iodide and the tetraphenylborate, recently determined experimentally for this purpose. The calculation required also published molar enthalpies of solution and solubilities of these two salts as well as of the perchlorate. The choice of the anions depended mainly on the limited solubilities of the examined salts in water, facilitating the estimation of the relevant activity coefficients. The result is S(Bu4N+, aq) = (380 ± 20) J · K−1 · mol−1 at T = 298.15 K, on the mol · dm−3 scale and based on S(H+, aq) = (−22.2 ± 1.2) J · K−1 · mol−1 (yielding the ‘absolute’ value). The molar entropy of this cation in the ideal gas standard state, S(Bu4N+, g) = (798 ± 8) J · K−1 · mol−1 then yielded the molar entropy of hydration ΔhydS (Bu4N+) = (−418 ± 23) J · K−1 · mol−1.  相似文献   

7.
La1−x(PO3)3:Tbx3+ (0<x0.6) were prepared using solid-state reaction. The vacuum ultraviolet (VUV) excitation spectrum of La0.55(PO3)3:Tb0.453+ indicates that the absorption of (PO3)33− groups locates at about 163 and 174 nm and the absorption bands of (PO3)33− groups (174 nm) and La3+–O2− (200 nm) and Tb3+ (213 nm) overlap each other. These results imply that the (PO3)33− groups can efficiently absorb the excited energy around 172 nm and transfer the energy to Tb3+. Under 172 nm excitation, the optimal photoluminescence (PL) intensity is obtained when Tb concentration reaches 0.45 and is about 71% of commercial phosphor Zn1.96SiO4:0.04 Mn2+ with chromaticity coordinates of (0.343, 0.578) and the decay time of about 4.47 ms.  相似文献   

8.
The hollow fiber composite membrane involving Zr0.84Y0.16O1.92 (YSZ) as an oxygen ionic conductor and La0.8Sr0.2MnO3−δ (LSM) as an electronic conductor was explored for oxygen separation application. The hollow fiber precursor was prepared by the phase-inversion process, and transformed to a gas-tight ceramic by sintering at 1350 °C. The as-prepared fiber exhibited a thermal expansion coefficient of 11.1 × 10−6 K−1 and a three-point bending strength of 152 ± 12 MPa. An oxygen permeation flux of 2.1 × 10−7 mol cm−2 s−1 was obtained under air/He gradient at 950 °C for a hollow fiber of length 57.00 mm and wall thickness 0.16 mm. The oxygen permeation flux remained unchanged when the sweeping gas was changed from helium to high concentration of CO2. Considering the satisfactory trade-off between the permeability and stability, the YSZ–LSM hollow fiber is promising for oxygen production applications.  相似文献   

9.
We report on the utilization of gold nanorods to create a highly responsive glucose biosensor. The feasibility of an amperometric glucose biosensor based on immobilization of glucose oxidase (GOx) in gold nanorod is investigated. GOx is simply mixed with gold nanorods and cross-linked with a cellulose acetate (CA) medium by glutaraldehyde. The adsorption of GOx on the gold nanorods is confirmed by X-ray photoelectron spectroscopy (XPS) measurements. Circular dichroism (CD) and UV-spectrum results show that the activity of GOx was preserved after conjugating with gold nanorods. The current response of modified electrode is 10 times higher than that of without gold nanorods. Under optimal conditions, the biosensor shows high sensitivity (8.4 μA cm−2 mM−1), low detection limit (2 × 10−5 M), good storage stability and high affinity to glucose (). A linear calibration plot is obtained in the wide concentration range from 3 × 10−5 to 2.2 × 10−3 M.  相似文献   

10.
In this communication, an amperometric glucose biosensor based on MnO2/MWNTs electrode was reported. MnO2 was homogeneously coated on vertically aligned MWNTs by electrodeposition. The MnO2/MWNTs electrode displayed high electrocatalytic activity towards the oxidation of glucose in alkaline solution, showing about 0.30 V negative shift in peak potential with oxidation starting at ca. −0.20 V (vs. 3 M KCl–Ag/AgCl) as compared with bare MWNTs electrode. At an applied potential of +0.30 V, the MnO2/MWNTs electrode gives a linear dependence (R = 0.995) in the glucose concentration up to 28 mM with a sensitivity of 33.19 μA mM−1. Meanwhile, the MnO2/MWNTs electrode is also highly resistant toward poisoning by chloride ions. In addition, interference from the oxidation of common interfering species such as ascorbic acid, dopamine, and uric acid is effectively avoided. The MnO2/MWNTs electrode allows highly sensitive, low-potential, stable, and fast amperometric sensing of glucose, which is promising for the development of nonenzymatic glucose sensor.  相似文献   

11.
Heterogeneous electrocatalytic reduction of hydrogen peroxide (H2O2) by C60 is reported for the first time. C60 is embedded in tetraoctylammonium bromide (TOAB) film and is characterized by scanning electron microscopy and cyclic voltammetry. Electrocatalytic studies show that the trianion of C60 mediates the electrocatalytic reduction of H2O2 in aqueous solution containing 0.1 M KCl. Application of such film modified electrode as an amperometric sensor for H2O2 determination is also examined. The sensor shows a fast response within 1 s and a linear response is obtained (R = 0.9986) in the concentration range from 3.33 × 10−5 to 2.05 × 10−3 mol L−1 for H2O2, with the detection limit of 2 × 10−5 mol L−1 and the sensitivity of 1.65 μA mM−1. A good repeatability and stability is shown for the sensor during the experiment.  相似文献   

12.
Infrared spectroscopy has been used to study nano- to micro-sized gallium oxyhydroxide α-GaO(OH), prepared using a low temperature hydrothermal route. Rod-like α-GaO(OH) crystals with average length of 2.5 μm and width of 1.5 μm were prepared when the initial molar ratio of Ga to OH was 1:3. β-Ga2O3 nano and micro-rods were prepared through the calcination of α-GaO(OH). The initial morphology of α-GaO(OH) is retained in the β-Ga2O3 nanorods.The combination of infrared and infrared emission spectroscopy complimented with dynamic thermal analysis were used to characterise the α-GaO(OH) nanotubes and the formation of β-Ga2O3 nanorods. Bands at around 2903 and 2836 cm−1 are assigned to the –OH stretching vibration of α-GaO(OH) nanorods. Infrared bands at around 952 and 1026 cm−1 are assigned to the Ga–OH deformation modes of α-GaO(OH). A significant number of bands are observed in the 620–725 cm−1 region and are assigned to GaO stretching vibrations.  相似文献   

13.
Mixed-chelate complexes of ruthenium have been synthesized using tridentate Schiff-base ligands (TDLs) derived from condensation of 2-aminophenol or 2-aminobenzoic acid with aldehydes (salicyldehyde, 2-pyridinecarboxaldehyde), and tmeda (tetramethylethylenediamine). [RuIII(hpsd)(tmeda)(H2O)]+ (1), [RuIII(hppc)(tmeda)(H2O)]2+ (2), [RuIII(cpsd)(tmeda)(H2O)]+ (3) and [RuIII(cppc)(tmeda)(H2O)]2+ (4) complexes (where hpsd2− = N-(hydroxyphenyl)salicylaldiminato); hppc = N-(2-hydroxyphenylpyridine-2-carboxaldiminato); cpsd2− = (N-(2-carboxyphenyl)salicylaldiminato); cppc = N-2-carboxyphenylpyridine-2-carboxaldiminato) were characterized by microanalysis, spectral (IR and UV–vis), conductance, magnetic moment and electrochemical studies. Complexes 14 catalyzed the epoxidation of cyclohexene, styrene, 4-chlorostyrene, 4-methylstyrene, 4-methoxystyrene, 4-nitrostyrene, cis- and trans-stilbenes effectively at ambient temperature using tert-butylhydroperoxide (t-BuOOH) as terminal oxidant. On the basis of Hammett correlation (log krel vs. σ+) and product analysis, a mechanism involving intermediacy of a [Ru–O–OBut] radicaloid species is proposed for the catalytic epoxidation process.  相似文献   

14.
The spectra and kinetic behavior of solvated electrons (esol) in alkyl ammonium ionic liquids (ILs), i.e. N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEMMA-TFSI), N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEMMA-BF4), N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide (TMPA-TFSI), N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI), N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13-TFSI), and N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P14-TFSI) were investigated by the pulse radiolysis method. The esol in each of the ammonium ILs has an absorption peak at 1100 nm, with molar absorption coefficients of 1.5–2.3×104 dm3 mol−1 cm−1. The esol decayed by first order with a rate constant of 1.4–6.4×106 s−1. The reaction rate constant of the solvated electron with pyrene (Py) was 1.5–3.5×108 dm3 mol−1 s−1 in the various ILs. These values were about one order of magnitude higher than the diffusion-controlled limits calculated from measured viscosities. The radiolytic yields (G-value) of the esol were 0.8–1.7×10−7 mol J−1. The formation rate constant of esol in DEMMA-TFSI was 3.9×1010 s−1. The dry electron (edry) in DEMMA-TFSI reacts with Py with a rate constant of 7.9×1011 dm3 mol−1 s−1, three orders of magnitude higher than that of the esol reactions. The G-value of the esol in the picosecond time region is 1.2×10−7 mol J−1. The capture of edry by scavengers was found to be very fast in ILs.  相似文献   

15.
In neutral and acidic aqueous solutions containing 2 mol L−1 of Cl, the decay of the solvated electron and the formation of ClOH and were studied by picosecond pulse radiolysis experiment. The rate constant for the reaction of and H3O+ is 1.3 × 1010 L mol−1 s−1. The yield of the OH radical at 100 ps is estimated to be 5.0 × 10−7  mol  J−1.  相似文献   

16.
A novel hybrid bifunctional sensing platform for simultaneous determination of NO and O2 has been developed, whereby hematite nanotubes are immobilized into the chitosan matrix onto a gold electrode (labeled as HeNTs-Chi/Au). The HeNTs distributed in porous-structured chitosan matrix not only offer abundant active sites for bifunctional sensing of NO and O2, but also facilitate oxidation of NO and reduction of O2 dramatically. Straight calibration curves are achieved in analyte concentration ranges of 5.0 × 10−8 to 1.25 × 10−6 mol L−1 for NO and 2.5 × 10−7 to 6.0 × 10−6 mol L−1 for O2. Also, the detection limits are low of 8.0 × 10−9 mol L−1 for NO and 5.0 × 10−8 mol L−1 for O2. Such an efficient bifunctional sensor for NO and O2 offers great potential in quantitation of NO levels in biological and medical systems, since NO level is highly regulated by various reactive oxygen species.  相似文献   

17.
A new electroanalytical methodology was developed for the quantification of the phytohormone indole-3-acetic acid (IAA), using a graphite–polyurethane composite electrode (GPU) and the square wave voltammetry (SWV), in 0.1 mol L− 1 phosphoric acid solution (pH 1.6). Analytical curves were constructed under optimized conditions (f = 100 s− 1, a = 50 mV, Ei = 5 mV) and the reached detection and quantification limits were 26 μg L− 1 and 0.2 mg L− 1, respectively. The developed methodology is simple and accurate for the routine determination of IAA. In order to verify the application of the electroanalytical methodology in fortified soil samples without previous treatment, an IAA assay was performed without serious interferences of the soil constituents.  相似文献   

18.
A simple, sensitive, selective and rapid kinetic catalytic method has been developed for the determination of Hg(II) ions at micro-level. This method is based on the catalytic effect of Hg(II) ion on the rate of substitution of cyanide in hexacyanoruthenate(II) with nitroso-R-salt (NRS) in aqueous medium and provides good accuracy and precision. The concentration of Hg(II) catalyst varied from 4.0 to 10.0 × 10−6 M and the progress of reaction was followed spectrophotometrically at 525 nm (λmax of purple-red complex [Ru(CN)5NRS]3−,  = 3.1 × 103 M−1 s−1) under the optimized reaction conditions; 8.75 × 10−5 M [Ru(CN)64−], 3.50 × 10−4 M [nitroso-R-salt], pH 7.00 ± 0.02, ionic strength, I = 0.1 M (KCl), temp 45.0 ± 0.1 °C. The linear calibration curves, i.e. calibration equations between the absorbance at fixed times (t = 15, 20 and 25 min) versus concentration of Hg(II) ions were established under the optimized experimental conditions. The detection limit was found to be 1.0 × 10−7 M of Hg(II). The effect of various foreign ions on the proposed method has also been studied and discussed. The method has been applied to the determination of mercury(II) in aqueous solutions.  相似文献   

19.
Phenomenological coefficients of shale–electrolyte systems may offer a glimpse into probable matrix-permeability and solute-exclusionary relationships. Shales from unexposed Upper Cretaceous Period Mancos Shale and from Permian Period Abo Formation were cut into thin wafers, placed in custom built osmometers and a chemical potential applied across them giving rise to induced osmotic flow. This in turn spawned matrix unique constants namely mechanical filtration coefficient LP (m3 N−1 s−1), diffusional mobility per unit osmotic pressure LPD (m3 N−1 s−1), osmotic flow coefficient; LD (m3 N−1 s−1), reflection coefficient σ (dimensionless) at zero gradients of temperature and hydrostatic pressure. Considering intrinsic relationships between these constants where and LPD = −σLP, we have ascertained that the bentonitic fossiliferous Mancos shale had a lower LP and a higher σ compared to the kaolinitic and siliceous shale from Abo Formation indicating a higher degree of compaction post-diagenesis (lower porosity) and higher filtration efficiency. Mechanistic processes involved in solute transport and matrix morphology indicate key multi-scale transformations, ionic- and atomic-exchange competitions on high energy sites like cation-exchange sites, isomorphic substitution at argillaceous mineral edges, atomic-clipping within basal spacing, preferential pathway migration, dead-end pores that give rise to localized solute exclusionary processes and solute attenuation giving rise to anomalous osmotic gradients.  相似文献   

20.
The ground- and excited-state structures for a series of Os(II) diimine complexes [Os(NN)(CO)2I2] (NN = 2,2′-bipyridine (bpy) (1), 4,4′-di-tert-butyl-2,2′-bipyridine (dbubpy) (2), and 4,4′-dichlorine-2,2′-bipyridine (dclbpy) (3)) were optimized by the MP2 and CIS methods, respectively. The spectroscopic properties in dichloromethane solution were predicted at the time-dependent density functional theory (TD-DFT, B3LYP) level associated with the PCM solvent effect model. It was shown that the lowest-energy absorptions at 488, 469 and 539 nm for 13, respectively, were attributed to the admixture of the [dxy (Os) → π*(bpy)] (metal-to-ligand charge transfer, MLCT) and [p(I) → π*(bpy)] (interligand charge transfer, LLCT) transitions; their lowest-energy phosphorescent emissions at 610, 537 and 687 nm also have the 3MLCT/3LLCT transition characters. These results agree well with the experimental reports. The present investigation revealed that the variation of the substituents from H → t-Bu → Cl on the bipyridine ligand changes the emission energies by altering the energy level of HOMO and LUMO but does not change the transition natures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号