首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
合成了系列铕铽双核稀土有机稀土配合物Tb1-xEux(TTA)3Phen,通过差热.热重分析、XRD、红外光谱、紫外光谱和荧光光谱等测试手段研究了配合物的组成、结构和发光性质。由紫外可见光谱可以看出,稀土有机配合物的吸收峰主要来自有机配体HTrA和1,10-Phen;差热-热重分析证明,稀土有机配合物热稳定性较好。荧光光谱和电致发光表明,铽对铕配合物的发光有协同作用。在该系列配合物中,不仅有机配体可以将吸收的能量传递给发光的铕离子使其发光,而且铽离子也可将其吸收的能量通过分子内能量传递给铕离子,增强铕的发光强度。同时就双核稀土有机配合物光致发光和电致发光的特性及掺杂体系的能量传递过程进行了讨论。  相似文献   

2.
本文采用激光诱导荧光法研究了钐、铕、铽和镝配合物的化学性质、光谱特性与光谱能级间的关系,提出了稀土配合物荧光发射的能量传递模型,并导出速率方程和定态解,根据Dexter固体敏化发光理论讨论了影响荧光产率的各种因素,推导出配体三重态向稀土离子激发态进行有效能量传递的3个条件。  相似文献   

3.
本文采用经典Claisen酮酯缩合法,合成了一种新型双官能团配体6-对甲基苯甲酰乙酰基-2-吡啶甲酸(H2L),通过红外光谱、核磁共振谱和质谱对其结构进行了表征。以H2L为配体合成了铕的二元配合物和1,10-菲咯啉为第二配体的三元配合物,并通过红外光谱、差热热重分析、荧光光谱对配合物进行了表征及其发光性质研究。结果表明:所有配合物均能发射铕(Ⅲ)的特征光谱,最强发射峰在615nm左右,配体极好地敏化了稀土离子的发光。第二配体的引入使三元配合物的荧光强度明显大于二元配合物的荧光强度。  相似文献   

4.
稀土配合物发射带窄,发射光谱具有类原予光谱性质,色纯度高(半宽峰<10 nm),非常适合于全彩色显示.另外,稀土配合物发光效率高,理论上内量子效率可达100%.因此,稀土配合物是全色平板显示器件中理想的发光材料之一,研究稀土配合物电致发光性质具有重要的实际意义和理论意义.以稀土镧系离子配合物作为发光中心的电致发光器件的研究主要集中于发光效率比较高的Eu3+,Tb3+以及近红外的Nd3+,Yb3+和Er3+离子.分类综述了近年稀土配合物电致发光研究的成果及其进展.总结了不同类型的铕配合物、铽配合物的电致发光特性,证明配体对于稀土离子的敏化作用非常重要;总结了近红外的镱、钕、铒配合物在光放大、激光技术、生物医学等方面的潜在应用价值.  相似文献   

5.
合成了几种新型的稀土(钆,铕,铽)的N-苯基邻氨基苯甲酸-1,10-邻菲咯啉的二元、三元配合物.以元素分析、红外光谱和紫外光谱进行了表征,确定了组成.同时以低温磷光光谱确定了配体的三重态能级为24330cm-1,研究了配体与稀土离子的能级匹配.详细讨论了配合物的光物理性质如发光性能和配体与稀土离子之间以及有机配体之间的分子内能量传递机制,结果发现,铽的N-苯基邻氨基苯甲酸-1,10-邻菲咯啉配合物的发光性能良好.  相似文献   

6.
以肉桂酸和苯乙酮为原料合成了1,5-二苯基-4-烯-1,3-戊二酮(DPPD)配体,以DPPD为第一配体,1,10-邻菲罗啉为第二配体,合成了稀土铕配合物并通过红外光谱进行了表征,同时,研究了配合物的发光性能。  相似文献   

7.
稀土有机配合物电致发光研究进展   总被引:2,自引:0,他引:2  
稀土配合物发射带窄, 发射光谱具有类原子光谱性质, 色纯度高(半宽峰<10 nm), 非常适合于全彩色显示. 另外, 稀土配合物发光效率高, 理论上内量子效率可达100%. 因此, 稀土配合物是全色平板显示器件中理想的发光材料之一, 研究稀土配合物电致发光性质具有重要的实际意义和理论意义. 以稀土镧系离子配合物作为发光中心的电致发光器件的研究主要集中于发光效率比较高的Eu3+, Tb3+ 以及近红外的Nd3+, Yb3+和Er3+ 离子. 分类综述了近年稀土配合物电致发光研究的成果及其进展. 总结了不同类型的铕配合物、铽配合物的电致发光特性, 证明配体对于稀土离子的敏化作用非常重要; 总结了近红外的镱、钕、铒配合物在光放大、激光技术、生物医学等方面的潜在应用价值.  相似文献   

8.
合成了 13种桂皮酸和邻菲罗啉为配体的稀土配合物RE(phen)L3(L =C6H5CH =CHCOO- )。研究了配合物的红外光谱、摩尔电导、热重 差热曲线、X射线粉末衍射及荧光光谱。结果表明 ,稀土离子与配体间形成了化学键 ,配合物为晶体化合物 ,在 4 0 0和 540℃氧化分解 ;铕配合物Eu(phen)L3发出较强荧光 ,而其它配合物则发光较弱。  相似文献   

9.
以邻羟基苯乙酮和苯甲酰氯为原料, 经过酯化反应、 Fries重排合成了1-(2-羟基苯基)-3-苯基-1,3-丙二酮(HPPPD)及其与铕(Ⅲ)的配合物, 并通过IR, 热重-差热分析和^1H-NMR谱对其进行了表征. 研究了酚羟基的引入对稀土配合物发光性能的影响. 结果表明该配体与铕(Ⅲ)形成的配合物发出很强的铕(Ⅲ)的特征荧光, 并且以邻菲罗啉为第二配体的三元配合物的荧光强度明显高于二元配合物. 但是, 配体HPPPD与铽(Ⅲ)、钐(Ⅲ)和镝(Ⅲ)等形成的配合物, 无论是二元的, 还是三元的发光均很弱. 这是由于该配体的能级与不同稀土离子能级匹配程度的差别所致.  相似文献   

10.
三种新的铕(Ⅲ)三元配合物的合成及发光性质研究   总被引:4,自引:0,他引:4  
合成了吡嗪[2,3-f] 并邻菲罗啉及其一系列衍生物,作为第二配体,并以二苯甲酰甲烷为第一配体,合成了3种新的铕(Ⅲ)三元配合物.通过元素分析、红外光谱、核磁共振光谱确定了它们的组成,研究了三种配合物的热稳定性、成膜性能和光致发光性能(发光强度、荧光量子效率和寿命),并初步从理论上探讨含有不同基团的第二配体的结构对铕(Ⅲ)配合物发光的影响,结果表明:这三种铕(Ⅲ)三元配合物均为优良的红色发光材料,而且在真空条件下均形成均衡的薄膜,这为以这三种铕(Ⅲ)配合物作为发光层材料制作有机电致发光器件提供了认识基础.  相似文献   

11.
A new aryl amide type bifunctional bridging ligand 4,4'-bis{[(2'-benzylaminoformyl)phenoxyl]methyl}-1,1'-biphenyl (L) and its complexes with lanthanide ions (Ln=Pr, Eu, Gd, Tb, Ho, Er) were synthesized and characterized by elemental analysis, infrared spectra, conductivity measurements and thermal analysis. At the same time, the luminescence properties of the Eu and Tb complexes in acetone solutions were investigated. Under the excitation of UV light, these two complexes exhibited characteristic emission of europium and terbium ions. And the lowest triplet state energy level T1 of this ligand matches better to the lowest resonance energy level of Tb(III) than to Eu(III) ion.  相似文献   

12.
A new ligand, N,N'-di(pyridine N-oxide-2-yl)pyridine-2,6-dicarboxamide (LH2) and its several lanthanide (III) complexes (La, Eu, Gd, Tb, Y) were synthesized and characterized in detail based on elemental analysis, conductivity measurements, IR, 1H NMR, MS (FAB) and UV spectra and TG-DTA studies. The results indicated that the composition of these binary complexes is [Ln(LH2)(NO3)2.H2O]NO3.nH2O (n=0-1); while the ligand has a good planar structure with strong hydrogen bonds. The fluorescence spectra exhibits that the Tb (III) complex and the Eu (III) complex display characteristic metal-centered fluorescence in solid state while ligand fluorescence is completely quenched. However, the Tb (III) complex displays more effective luminescence than the Eu (III) complex, which is attributed to especial effectivity in transferring energy from the lowest triplet energy level of the ligands (T) onto the excited state (5D4) of Tb (III) than that (5D1) of Eu (III).  相似文献   

13.
The bis(beta-diketone) ligands 1,3-bis(3-phenyl-3-oxopropanoyl)benzene, H(2)L(1) and 1,3-bis(3-phenyl-3-oxopropanoyl) 5-ethoxy-benzene, H(2)L(2), have been prepared for the examination of dinuclear lanthanide complex formation and investigation of their properties as sensitizers for lanthanide luminescence. The ligands bear two conjugated diketonate binding sites linked by a 1,3-phenylene spacer. The ligands bind to lanthanide(III) or yttrium(III) ions to form neutral homodimetallic triple stranded complexes [M(2)L(1)(3)] where M = Eu, Nd, Sm, Y, Gd and [M(2)L(2)(3)], where M = Eu, Nd or anionic quadruple-stranded dinuclear lanthanide units, [Eu(2)L(1)(4)](2-). The crystal structure of the free ligand H(2)L(1) has been determined and shows a twisted arrangement of the two binding sites around the 1,3-phenylene spacer. The dinuclear complexes have been isolated and fully characterized. Detailed NMR investigations of the complexes confirm the formation of a single complex species, with high symmetry; the complexes show clear proton patterns with chemical shifts of a wide range due to the lanthanide paramagnetism. Addition of Pirkle's reagent to solutions of the complexes leads to splitting of the peaks, confirming the chiral nature of the complexes. Electrospray and MALDI mass spectrometry have been used to identify complex formulation and characteristic isotope patterns for the different lanthanide complexes have been obtained. The complexes have high molar absorption coefficients (around 13 x 10(4) M(-1)cm(-1)) and display strong visible (red or pink) or NIR luminescence upon irradiation at the ligand band around 350 nm, depending on the choice of the lanthanide. Emission quantum yield experiments have been performed and the luminescence signals of the dinuclear complexes have been found to be up to 11 times more intense than the luminescence signals of the mononuclear analogues. The emission quantum yields and the luminescence lifetimes are determined to be 5% and 220 micros for [Eu(2)L(1)(3)], 0.16% and 13 micros for [Sm(2)L(1)(3)], and 0.6% and 1.5 micros for [Nd(2)L(1)(3)]. The energy level of the ligand triplet state was determined from the 77 K spectrum of [Gd(2)L(1)(3)]. The bis-diketonate ligand is shown to be an efficient sensitizer, particularly for Sm and Nd. Photophysical studies of the europium complexes at room temperature and 77 K show the presence of a thermally activated deactivation pathway, which we attribute to ligand-to-metal charge transfer (LMCT). Quenching of the luminescence from this level seems to be operational for the Eu(III) complex but not for complexes of Sm(III) and Nd(III), which exhibit long lifetimes. The quadruple-stranded europium complex has been isolated and characterized as the piperidinium salt of [Eu(2)L(1)(4)](2-). Compared with the triple-stranded Eu(III) complex in the solid state, the quadruple-stranded complex displays a more intense emission signal with a distinct emission pattern indicating the higher symmetry of the quadruple-stranded complex.  相似文献   

14.
利用烯-巯加成的方法,合成了一种带有三联吡啶基团的有机硅氧烷,该中间体用核磁共振、红外、质谱等手段进行了表征确认.以该中间体作为第二配体,加入稀土(Eu3+、Tb3+)烟酸配合物,在正硅酸乙酯的存在下用溶胶-凝胶法原位制备了稀土(Eu3+、Tb3+)烟酸配合物与二氧化硅基质以共价键相连的烟酸稀土分子杂化发光材料.通过红外光谱、紫外-可见光漫反射光谱、荧光光谱和寿命测试表征了制备的杂化发光材料.荧光光谱数据表明在杂化材料中,由于三联吡啶配体通过有效的分子内传能过程将其激发态的能量传递给稀土离子的发射能级,从而极大地提高了稀土离子的特征发射.掺铕离子的最强发射为617nm,是纯红光发射;而掺铽离子的最强发射为543nm,是典型的绿光发射.掺铕和铽的分子杂化材的荧光寿命分别为0.66ms,0.68ms,同时荧光衰减均为一级指数衰减,说明稀土离子在杂化材料中分散得很均匀.  相似文献   

15.
The new ligand N-benzyl-2-{2'-[(benzyl-ethyl-carbamoyl)-methoxy]-biphenyl-2-yloxy}-N-ethyl-acetamide (L) and its complexes of rare earth picrates were synthesized. The complexes were characterized by elemental analysis, IR, UV-vis spectra and conductivity measurements. The fluorescence properties of the europium complex in solid state and in CHCl(3), ethyl acetate, acetone, acetonitrile and DMF were investigated. Under the excitation, the europium complex exhibited characteristic emissions of europium. The lowest triplet state energy level of the ligand indicates that the triplet state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III) ion.  相似文献   

16.
Solid complexes of lanthanide nitrate with 1,4-di(N,N-di-n-butyl-acetamido)-quinoxaline-2,3-dione (L), [Ln(N03)3L.H2O] (Ln=La, Nd, Eu, Gd, Tb, Er), have been prepared and characterized by elemental analysis, IR, UV-vis spectra and conductivity measurements. The fluorescence property of the europium complex in solid state and in MeCN, acetone, AcOEt and THF was studied. Under the excitation, the europium complex exhibited characteristic emissions of europium. The result indicates that the triplet state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III) ion.  相似文献   

17.
Three new aryl amide type ligands, N-(phenyl)-2-(quinolin-8-yloxy)acetamide (L(1)), N-(benzyl)-2-(quinolin-8-yloxy)acetamide (L(2)) and N-(naphthalene-1-yl)-2-(quinolin-8-yloxy)acetamide (L(3)) were synthesized. With these ligands, three series of lanthanide(III) complexes were prepared: [Ln(L(1))(2)(NO(3))(2)]NO(3), [Ln(L(2))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O and [Ln(L(3))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O (Ln=La, Sm, Eu, Gd). The complexes were characterized by the elemental analyses, molar conductivity, (1)H NMR spectra, IR spectra and TG-DTA. The fluorescence properties of complexes in the solid state and the triplet state energies of the ligands were studied in detail, respectively. It was found that the Eu(III) complexes have bright red fluorescence in solid state. The energies of excited triplet state for the three ligands are 20325 cm(-1) (L(3)), 21053 cm(-1) (L(2)) and 22831 cm(-1) (L(1)), respectively. All the three ligands sensitize Eu(III) strongly and the order of the emission intensity for the Eu(III) complexes with the three ligands is L(3)>L(2)>L(1). It can be explained by the relative energy gap between the lowest triplet energy level of the ligand (T) and (5)D(1) of Eu(III). This means that the triplet energy level of the ligand is the chief factor, which dominates Eu(III) complexes luminescence.  相似文献   

18.
Shi M  Li F  Yi T  Zhang D  Hu H  Huang C 《Inorganic chemistry》2005,44(24):8929-8936
Three pyrazolone-based ligands, namely 1-phenyl-3-methyl-4-(1-naphthoyl)-5-pyrazolone (HL1), 1-phenyl-3-methyl-4-(4-dimethylaminobenzoyl)-5-pyrazolone (HL2), and 1-phenyl-3-methyl-4-(4-cyanobenzoyl)-5-pyrazolone (HL3), were synthesized by introducing electron-poor or electron-rich aryl substituents at the 4-position of the pyrazolone ring. Their corresponding europium complexes Eu(LX)3(H2O)2 and Eu(LX)3(TPPO)(H2O) (X = 1-3) were characterized by photophysical studies. The characteristic Eu(III) emission of these complexes with at most 9.2 x 10(-3) of fluorescent quantum yield was observed at room temperature. The results show that the modification of ligands tunes the triplet energy levels of three pyrazolone-based ligands to match the 5D0 energy level of Eu3+ properly and improves the energy transfer efficiency from antenna to Eu3+, therefore enhancing the Eu(III) emission intensity. The highest energy transfer efficiency and probability of lanthanide emission of Eu(L1)3(H2O)2 are 35.1% and 2.6%, respectively, which opens up broad prospects for improving luminescent properties of Eu(III) complexes by the modification of ligands. Furthermore, the electroluminescent properties of Eu(L1)3(TPPO)(H2O) were also investigated.  相似文献   

19.
A series of N^N,O^O-bridging ligands based on substituted 1-(pyridin-2-yl)-3-methyl-5-pyrazolone and their corresponding heteroleptic iridium(III) complexes as well as Ir-Eu bimetallic complexes were synthesized and fully characterized. The influence of the triplet energy levels of the bridging ligands on the energy transfer (ET) process from the Ir(III) complexes to Eu(III) ions in solution was investigated at 77 K in Ir(III)/Eu(III) dyads. Photophysical experiment results show the bridging ligands play an important role in the ET process. Only when the triplet energy level of the bridging ligand was lower than the triplet metal-to-ligand charge transfer ((3)MLCT) energy level of the Ir moiety, was pure emission from the Eu(III) ion observed, implying complete ET took place from the Ir moiety to the Eu(III) ion.  相似文献   

20.
Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu(3+) = 1, Tb(3+) = 2, and Gd(3+) = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {[Eu(L)(3)(H(2)O)(2)]}(n) (1) and {[Tb(L)(3)(H(2)O)].(H(2)O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb(3+) emission (Φ(overall) = 64%) thanks to the favorable position of the triplet state ((3)ππ*) of the ligand [the energy difference between the triplet state of the ligand and the excited state of Tb(3+) (ΔE) = (3)ππ* - (5)D(4) = 3197 cm(-1)], as investigated in the Gd(3+) complex. On the other hand, the corresponding Eu(3+) complex shows weak luminescence efficiency (Φ(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (ΔE = (3)ππ* - (5)D(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu(3+) and Tb(3+) ions with the general formula {[Eu(0.5)Tb(0.5)(L)(3)(H(2)O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb(3+) and Eu(3+) in a mixed lanthanide system (η = 86%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号