首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
New poly(aryl‐ethynylene) polymers of tuned rigidity/flexibility were synthesized by a palladium‐catalyzed polycondensation. The Sonogashira–Hagihara‐type coupling reaction of 2,5‐diethynyl‐4‐dodecyltoluene with 2,5‐ and/or 3,5‐dibromopyridine led to polymers of different rigidity/flexibility simply by varying the ratio of 2,5‐ to 3,5‐dibromopyridine charged in the polycondensation reaction. The ratio of para–meta linkages at the pyridine moiety in the polymer backbone was determined by NMR spectroscopy. The combination of molecular weight data obtained from vapor pressure osmometry and the use of oligomeric model compounds allowed us to establish a polymer‐specific gel permeation chromatography calibration. Information about the molecular conformation of the polymers in solution were obtained by small‐angle X‐ray scattering (SAXS) experiments. The glass‐transition and melting temperatures varied systematically with the degree of rigidity/flexibility and could be directly related to the conformational changes as reflected from the SAXS data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1919–1933, 2004  相似文献   

5.
A set of flapping acene dimers fused with an 8π cyclooctatetraene (COT) ring showed distinct excited‐state dynamics in solution. While the anthracene dimer showed a fast V‐shaped‐to‐planar conformational change within 10 ps in the lowest excited singlet state, reminding us of extended Baird aromaticity, the tetracene dimer and the pentacene dimer underwent intramolecular singlet fission (SF) in different manners: A fast and reversible SF with a characteristic delayed fluorescence (FL), and a fast and quantitative SF, respectively. Conformational flexibility of the fused COT linkage plays an important role in these ultrafast dynamics, demonstrating the utility of the flapping molecular series as a versatile platform for designing photofunctional systems.  相似文献   

6.
7.
8.
9.
10.
11.
Simultaneous drug release and monitoring using a single polymeric platform represents a significant advance in the utilization of biomaterials for therapeutic use. Tracking drug release by real‐time electrochemical detection using the same platform is a simple way to guide the dosage of the drug, improve the desired therapeutic effect, and reduce the adverse side effects. The platform developed in this work takes advantage of the flexibility and loading capacity of hydrogels, the mechanical strength of microfibers, and the capacity of conducting polymers to detect the redox properties of drugs. The engineered platform is prepared by assembling two spin‐coated layers of poly‐γ‐glutamic acid hydrogel, loaded with poly(3,4‐ethylenedioxythiophene) (PEDOT) microparticles, and separated by a electrospun layer of poly‐ε‐caprolactone microfibers. Loaded PEDOT microparticles are used as reaction nuclei for the polymerization of poly(hydroxymethyl‐3,4‐ethylenedioxythiophene) (PHMeDOT), that semi‐interpenetrate the whole three layered system while forming a dense network of electrical conduction paths. After demonstrating its properties, the platform is loaded with levofloxacin and its release monitored externally by UV–vis spectroscopy and in situ by using the PHMeDOT network. In situ real‐time electrochemical monitoring of the drug release from the engineered platform holds great promise for the development of multi‐functional devices for advanced biomedical applications.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号