首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Profound knowledge of protein abundances in healthy tissues and their changes in disease is crucial for understanding biological processes in basic science and for the development of novel diagnostics and therapeutics. Mass spectrometrybased label-free protein quantification is used increasingly often to gain insights into physiological changes observed in perturbed systems. Although the soft ionization techniques electrospray ionization and matrix-assisted laser desorption/ionization have both been used for protein quantification, this article focuses on instrumental setups with a MALDI ion source. Beside reviewing current bioinformatic data-processing tools for label-free quantification and elaborating on the technical benefits of combining UHPLC and MALDI-MS, we outline the potential of state-of-the-art instruments by reporting unpublished results obtained from twenty-four complex biological samples. This review points out that the capabilities of LC-MALDI MS systems have not yet been fully utilized because of a lack of suitable software tools.  相似文献   

2.
Besides protein identification via mass spectrometric methods, protein and peptide quantification has become more and more important in order to tackle biological questions. Methods like differential gel electrophoresis or enzyme-linked immunosorbent assays have been used to assess protein concentrations, while stable isotope labeling methods are also well established in quantitative proteomics. Recently, we developed metal-coded affinity tagging (MeCAT) as an alternative for accurate and sensitive quantification of peptides and proteins. In addition to absolute quantification via inductively coupled plasma mass spectrometry, MeCAT also enables sequence analysis via electrospray ionization tandem mass spectrometry. In the current study, we developed a new labeling approach utilizing an iodoacetamide MeCAT reagent (MeCAT-IA). The MeCAT-IA approach shows distinct advantages over the previously used MeCAT with maleinimide reactivity such as higher labeling efficiency and the lack of diastereomer formation during labeling. Here, we present a careful characterization of this new method focusing on the labeling process, which yields complete tagging with an excess of reagent of 1.6 to 1, less complex chromatographic behavior, and fragmentation characteristics of the tagged peptides using the iodoacetamide MeCAT reagent.  相似文献   

3.
Mass spectrometry (MS)‐based quantitative proteomics has become a critical component of biological and clinical research for identification of biomarkers that can be used for early detection of diseases. In particular, MS‐based targeted quantitative proteomics has been recently developed for the detection and validation of biomarker candidates in complex biological samples. In such approaches, synthetic reference peptides that are the stable isotope labeled version of proteotypic peptides of proteins to be quantitated are used as internal standards enabling specific identification and absolute quantification of targeted peptides. The quantification of targeted peptides is achieved using the intensity ratio of a native peptide to the corresponding reference peptide whose spike‐in amount is known. However, a manual calculation of the ratios can be time‐consuming and labor‐intensive, especially when the number of peptides to be tested is large. To establish a liquid chromatography/matrix‐assisted laser desorption/ionization time‐of‐flight tandem mass spectrometry (LC/MALDI TOF/TOF)‐based targeted quantitative proteomics pipeline, we have developed a software named Mass Spectrometry based Quantification (MSQ). This software can be used to automate the quantification and identification of targeted peptides/proteins by the MALDI TOF/TOF platform. MSQ was applied to the detection of a selected group of targeted peptides in pooled human cerebrospinal spinal fluid (CSF) from patients with Alzheimer's disease (AD) in comparison with age‐matched control (OC). The results for the automated quantification and identification of targeted peptides/proteins in CSF were in good agreement with results calculated manually. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
基于稳定同位素标记的蛋白质组学定量方法研究进展   总被引:1,自引:0,他引:1  
周愿  单亦初  张丽华  张玉奎 《色谱》2013,31(6):496-502
定量蛋白质组学已经成为后基因时代的重要研究方向之一。目前该领域的研究主要采用无标记定量方法和稳定同位素标记定量法。其中,基于稳定同位素标记的蛋白质组定量方法发展非常迅速,已为生命科学研究提供了重要的技术支撑。本文分析了基于稳定同位素标记的蛋白质组学定量方法,包括相对定量方法和绝对定量方法,并对其发展进行了展望。  相似文献   

5.
Cytochrome P450 enzymes comprise families of highly homologous proteins. These proteins play a pivotal role in oxidative drug metabolism and are important targets in drug discovery research. Proteomics today is a valuable tool for the analysis of proteins. In the past, qualitative analysis of the proteome was the main focus of research, but in the last few years interest in the mathematical modelling of protein networks has been growing and so has the demand on quantitative proteome analysis. As a thorough understanding of cytochrome P450 dependent metabolism is crucial for drug discovery, it is thus not astounding that cytochrome P450 enzymes are a target for quantitative proteomics research. In this article, we review the techniques available for quantitative proteome analysis and to what extent these techniques have been used for the quantification of cytochrome P450 enzymes and give a brief outlook of the techniques that have promising potential for the analysis of these proteins in the future.  相似文献   

6.
Recently, the interests in proteomics have been intensively increased, and the proteomic methods have been widely applied to many problems in cell biology. If the age of 1990s is considered to be a decade of genomics, we can claim that the following years of the new century is a decade of proteomics. The rapid evolution of proteomics has continued through these years, with a series of innovations in separation techniques and the core technologies of two‐dimensional gel electrophoresis and MS. Both technologies are fueled by automation and high throughput computation for profiling of proteins from biological systems. As Patterson ever mentioned, ‘data analysis is the Achilles heel of proteomics and our ability to generate data now outstrips our ability to analyze it’. The development of automatic and high throughput technologies for rapid identification of proteins is essential for large‐scale proteome projects and automatic protein identification and characterization is essential for high throughput proteomics. This review provides a snap shot of the tools and applications that are available for mass spectrometric high throughput biocomputation. The review starts with a brief introduction of proteomics and MS. Computational tools that can be employed at various stages of analysis are presented, including that for data processing, identification, quantification, and the understanding of the biological functions of individual proteins and their dynamic interactions. The challenges of computation software development and its future trends in MS‐based proteomics have also been speculated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
蛋白质组学定量的技术与方法研究进展   总被引:3,自引:0,他引:3  
蛋白质组学是一门在整体水平上研究细胞内蛋白质组成及其活动规律的新兴学科。定量蛋白质组学是指通过某种方法或技术,对生物样品(细胞、组织或体液等)在某些过程中蛋白质的含量进行比较分析。近几年来,定量蛋白质组的技术发展很快,稳定同位素标记技术的提出,为准确定量在细胞或组织体系中发挥重要功能的低丰度蛋白质提供了一个理想的方法。本文综述了蛋白质组定量分析技术及其最新的研究进展。  相似文献   

8.
Protein glycosylation has a major influence on functions of proteins. Studies have shown that aberrations in glycosylation are indicative of disease conditions. This has prompted major research activities for comparative studies of glycoproteins in biological samples. Multiple reaction monitoring (MRM) is a highly sensitive technique which has been recently explored for quantitative proteomics. In this work, MRM was adopted for quantification of glycopeptides derived from both model glycoproteins and depleted human blood serum using glycan oxonium ions as transitions. The utilization of oxonium ions aids in identifying the different types of glycans bound to peptide backbones. MRM experiments were optimized by evaluating different parameters that have a major influence on quantification of glycopeptides, which include MRM time segments, number of transitions, and normalized collision energies. The results indicate that oxonium ions could be adopted for the characterization and quantification of glycopeptides in general, eliminating the need to select specific transitions for individual precursor ions. Also, the specificity increased with the number of transitions and a more sensitive analysis can be obtained by providing specific time segments. This approach can be applied to comparative and quantitative studies of glycopeptides in biological samples as illustrated for the case of depleted blood serum sample. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
单亦初  张丽华  张玉奎 《色谱》2014,32(4):330-335
选择性反应监测(SRM)技术作为一种重要的定向蛋白质分析技术,通过选择性检测特定母离子和子离子来排除非目标组分的干扰,增强了检测灵敏度和定量准确度,具有选择性高、重复性好、灵敏度高、动态范围宽等优点,已被广泛应用于定量蛋白质组学研究,在生命科学领域发挥着至关重要的作用。本文从分析通量、检测灵敏度、定量方法以及相关软件资源4个方面,对近期SRM技术的研究进展进行了综述。然后,对SRM技术在蛋白质组学研究包括生物标志物验证、蛋白质翻译后修饰研究、生物工程以及信号通路分析等领域中的应用进行了概述。最后,本文对SRM技术的应用以及发展前景进行了展望。  相似文献   

10.
Much progress has been made in identification of the proteins in proteomes, and quantification of these proteins has attracted much interest. In addition to popular tandem mass spectrometric methods based on soft ionization, inductively coupled plasma mass spectrometry (ICPMS), a typical example of mass spectrometry based on hard ionization, usually used for analysis of elements, has unique advantages in absolute quantification of proteins by determination of an element with a definite stoichiometry in a protein or attached to the protein. In this Trends article, we briefly describe state-of-the-art ICPMS-based methods for quantification of proteins, emphasizing protein-labeling and element-tagging strategies developed on the basis of chemically selective reactions and/or biospecific interactions. Recent progress from protein to cell quantification by use of ICPMS is also discussed, and the possibilities and challenges of ICPMS-based protein quantification for universal, selective, or targeted quantification of proteins and cells in a biological sample are also discussed critically. We believe ICPMS-based protein quantification will become ever more important in targeted quantitative proteomics and bioanalysis in the near future.
Online Abstract Figure
ICPMS-based protein and cell quantification  相似文献   

11.
Danos O  Svinartchouk F 《Electrophoresis》2006,27(17):3475-3479
2-DE is an important tool in proteomics research. However, intrinsic gel-to-gel variability of 2-DE often masks the biological differences between the samples and compromises quantitative comparison of protein expression levels. Here, we describe a modification of 2-DE that results in improved matching and quantification of proteins. This was accomplished by performing IEF of two samples in two IPG strips separated by a dialysis membrane. After IEF running, the strips were separated and the SDS-PAGE dimension was accomplished on two individual gels. After gel staining with CBB, ImageMaster 2D Platinum software (Amersham) was used for spot detection and quantification. Analysis of protein extracts from C2C12 myoblasts by this method resulted in 99% spot-matching efficiency and CV in stain intensity (% volume) was less than 0.5 for 98% of spots. We conclude that this technique, called dialysis-assisted gel electrophoresis, gives superior spot matching and quantitative reproducibility compared to IEF conducted on separate strips.  相似文献   

12.
Nice EC  Rothacker J  Weinstock J  Lim L  Catimel B 《Journal of chromatography. A》2007,1168(1-2):190-210; discussion 189
The routine detection of low abundance components in complex samples for detailed proteomics analysis continues to be a challenge. Whilst the potential of multidimensional chromatographic fractionation for this purpose has been proposed for some years, and was used effectively for the purification to homogeneity of trace components in bulk biological samples for N-terminal sequence analysis, its practical application in the proteomics arena is still limited. This article reviews some of the recent data using these approaches, including the use of microaffinity purification as part of multidimensional protocols for downstream proteomics analysis.  相似文献   

13.
Limitations of current proteomics technologies   总被引:9,自引:0,他引:9  
Application of proteomics technologies in the investigation of biological systems creates new possibilities in the elucidation of biopathomechanisms and the discovery of novel drug targets and early disease markers. A proteomic analysis involves protein separation and protein identification as well as characterization of the post-translational modifications. Proteomics has been applied in the investigation of various disorders, like neurological diseases, and the application has resulted in the detection of a large number of differences in the levels and the modifications of proteins between healthy and diseased states. However, the current proteomics technologies are still under development and show certain limitations. In this article, we discuss the major drawbacks and pitfalls of proteomics we have observed in our laboratory and in particular during the application of proteomics technologies in the investigation of the brain.  相似文献   

14.
多重反应监测(multiple reaction monitoring,MRM)是针对靶标分子的一种质谱分析技术.该技术采用三重四级杆质谱仪,检测靶标分子的母离子和子离子的质谱响应信号,从而获取较灵敏和高重现性的定性和定量信息,近年来在蛋白质组学领域得到了广泛应用.与全谱性的蛋白质组学分析不同,MRM注重有限目标的蛋白质定量测定,因此,它在蛋白质分析检测领域中的应用极有发展潜力.在临床检验中,酶联免疫吸附测定(enzyme linked immunosorbent assay,ELISA)是蛋白质定量分析的常规技术,但是ELISA在多重蛋白质生物标志物的测定方面具有一定限制.随着蛋白质组学的深入进行,MRM的定量分析优势可否应用于临床检测已提至日程,世界范围内多个研究团队一直致力于推动这一领域的发展,也取得了令人瞩目的成就.本文简单介绍了MRM技术的原理、优势及发展前景等,同时,对其在蛋白质组学研究及临床应用中的潜力进行了讨论.  相似文献   

15.
Although the proteome of each organism is unambiguously coded in its genome, the proteome shows the real biology in action in each particular organism. New powerful tools are being developed for biochemists and biologists to analyze complex biological samples for studying the complete protein supplement of the genome, i. e., the proteome. There are several methods available for proteome analysis including 2-DE and several forms of MS. In recent years, technologies such as microfluidics and array-based systems have appeared in the field of analysis, identification, and quantification of proteins. These novel approaches might help in solving current technical challenges in proteomics. This paper presents a practical application of the first commercially available microfluidic nano-ESI device coupled with nano-LC (i. e., HPLC-chip) for the analysis of samples of some biological protein mixtures.  相似文献   

16.
Liquid chromatography-mass spectrometry (LC-MS) has become an important analytical tool for quantitative proteomics and biomarker discovery. In the label-free differential LC-MS approach computational methods are required for an accurate alignment of peaks extrapolated from the experimental raw data accounting for retention time and m/z signals intensity, which are strongly affected by sample matrix and instrumental performance. A novel procedure "MassUntangler" for pairwise alignment has been developed, relying on a pattern-based matching algorithm integrated with filtering algorithms in a multi-step approach. The procedure has been optimized employing a two-step approach. Firstly, low-complexity LC-MS data derived from the enzymatic digestion of two standard proteins have been analyzed. Then, the algorithm's performance has been evaluated by comparing the results with other achieved using state-of-the-art alignment tools. In the second step, our algorithm has been used for the alignment of high-complexity LC-MS data consisting of peptides obtained by an Escherichia coli lysate available from a public repository previously used for the comparison of other alignment tools. MassUntangler gave excellent results in terms of precision scores (from 80% to 93%) and recall scores (from 68% to 89%), showing performances similar and even better than the previous developed tools. Considering the mass spectrometry sensitivity and accuracy, this approach allows the identification and quantification of peptides present in a biological sample at femtomole level with high confidence. The procedure's capability of aligning LC-MS data previously corrected for distortion in retention time has been studied through a hybrid approach, in which MassUntangler was interfaced with the OpenMS TOPP tool MapAligner. The hybrid aligner yielded better results, showing that an integration of different bioinformatic approaches for accurate label-free LC-MS data alignment should be used.  相似文献   

17.
18.
Within the past decade, imaging mass spectrometry (IMS) has been increasingly recognized as an indispensable technique for studying biological systems. Its rapid evolution has resulted in an impressive array of instrument variations and sample applications, yet the tools and data are largely confined to specialists. It is therefore important that at this junction the IMS community begin to establish IMS as a permanent fixture in life science research thereby making the technology and/or the data approachable by non-mass spectrometrists, leading to further integration into biological and clinical research. In this perspective article, we provide insight into the evolution and current state of IMS and propose some of the directions that IMS could develop in order to stay on course to become one of the most promising new tools in life science research.  相似文献   

19.
ICP–MS techniques based on isotope dilution analysis can be regarded as an emerging tool in quantitative protein analysis. Well-known concepts, for example species-specific and unspecific isotope dilution analysis, which promoted accurate and precise quantification in elemental speciation studies, have nowadays been transferred to the analysis of large biomolecules, e.g. proteins. Besides detection of heteroatom-containing proteins, the artificial introduction of metal-containing labels has attracted much attention and, as a consequence, ICP–MS-based isotope dilution techniques can serve as a valuable quantification tool. In particular, because isotope dilution ICP–MS techniques can enable absolute protein quantification, they can be regarded as an attractive technique in current and prospective proteomics. In this review, recent developments and applications will be highlighted and critically assessed.  相似文献   

20.
P-Glycoprotein (P-gp/ABCB1) is expressed in membrane barriers to exclude pharmacological substrates from cells, and therefore influences the ADME/Tox properties and efficacy of therapeutics. In the present study, a liquid chromatography/tandem mass spectrometry (LC/MS/MS)-mediated targeted proteomics was developed to quantitate P-gp protein. With the aid of in silico predictive tools, a unique 9-mer tryptic peptide of P-gp protein was synthesized (with the stable isotope labeled (SIL) peptide as internal standard) and applied for quantitative LC/MS/MS method development. For LC/MS/MS quantification, the N-glycosylation of the peptide, polymorphism and transmembrane region was intended to be excluded during the peptide selection. The lower limit of quantification was established to be 0.025 nM with the linearity of the standard curve ranging to 20 nM of P-gp signature peptides in the matrix digested surrogate bovine serum albumin. The digestion efficiency, both the accuracy (relative error) and the precision (coefficient of variation) of the method, was verified by using the synthetic quantification peptide and the synthetic surrogate substrate peptide that mimics the sequence of tryptic peptide and associated flanking tryptic cleavage sites at the N- and C-terminals. By applying the method developed, the absolute amounts of human, dog and mouse P-gp (Mdr1a) were quantified in various biological samples. LC/MS/MS-mediated P-gp quantification was achieved as a highly sensitive, selective and reproducible assay and could be directly applicable to many current research needs related to P-gp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号