首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A one‐step ultrasound/microwave‐assisted solid–liquid–solid dispersive extraction procedure was used for the simultaneous determination of eight neonicotinoids (dinotefuran, nitenpyram, thiamethoxam, clothianidin, imidacloprid, acetamiprid, thiacloprid, imidaclothiz) in dried Dendrobium officinale by liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry in multiple reaction monitoring mode. The samples were quickly extracted by acetonitrile and cleaned up by the mixed dispersing sorbents including primary secondary amine, C18, and carbon‐GCB. Parameters that could influence the ultrasound/microwave‐assisted extraction efficiency such as microwave irradiation power, ultrasound irradiation power, temperature, and solvent were investigated. Recovery studies were performing well (70.4–113.7%) at three examined spiking levels (10, 50, and 100 μg/kg). Meanwhile, the limits of quantification for the neonicotinoids ranged from 0.87 to 1.92 μg/kg. The method showed good linearity in the concentration range of 1–100 μg/L with correlation coefficients >0.99. This quick and useful analytical method could provide a basis for monitoring neonicotinoid insecticide residues in herbs.  相似文献   

2.
An ionic liquid‐based ultrasound‐assisted extraction method has been developed for the effective extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. The effects of some ultrasound‐assisted extraction parameters including the concentration of [BMIM][BF4], pH, ultrasonic power and time were investigated to optimize the ultrasound‐assisted extraction conditions. Compared to the regular ultrasound‐assisted extraction and traditional refluent extraction, the proposed [BMIM][BF4]‐based ultrasound‐assisted extraction offered shorter extraction times (from 6 h to 40 min) and remarkable higher efficiencies (approximately 30% improved), which supported the suitability of the proposed approach. In addition, the proposed approach was confirmed by the good correlation coefficient (R2), recovery and reproducibility (RSD, n = 5), which were in the range of 0.9992–0.9995, 85.5–101.1%, and 1.87–4.33%, respectively.  相似文献   

3.
Detailed chemotaxonomic studies were undertaken to establish the qualitative profile and real amounts of the pharmacologically active isoflavone aglycones genistein, daidzein, formononetin, and biochanin A in aerial parts of thirteen Trifolium L. (clover) species, native to Poland. A newly elaborated micropreparative technique – SPE – on BakerBond octadecyl, cyclohexyl, and phenyl cartridges was used in combination with ultrasound‐assisted extraction for isolation of isoflavone aglycones from hydrolyzed samples. The effectiveness of all three SPE sorbents in the purification of plant extracts was compared and very high recoveries (>96%) were documented for four isoflavones. Classical photodiode‐array and very sensitive fluorescence detection, coupled with reversed‐phase high‐performance liquid chromatography (RP‐HPLC), were employed to obtain the most reliable qualitative and quantitative results. Chemotaxonomic differences combined with flower color variability were demonstrated within thirteen clover species. Concentration levels of particular isoflavones in ten Trifolium species possessing flowers with white, pink, or purple‐red corolla ranged from ∼︁3 to ∼︁3300 μg/g dry weight, while in three yellow flowering clovers (T. aureum, T. dubium, and T. campestre) isoflavone compounds have not been detected at all. RSD values, determined for intra‐ and inter‐day precision of the quantitative results, were not higher than 6.2% and 7.1%, respectively.  相似文献   

4.
An optimized method for the determination of five synthetic polycyclic: celestolide (ADBI), phantolide (AHMI), traseolide (ATII), galaxolide (HHCB), tonalide (AHTN), and two nitro‐aromatic musks: musk xylene (MX) and musk ketone (MK), in water samples is described. The method involves a dispersive micro solid‐phase extraction (D‐μ‐SPE) plus ultrasound‐assisted solvent desorption (UASD) prior to their determination by gas chromatography‐mass spectrometry (GC‐MS) using the selected ion storage (SIS) mode. Factors affecting the extraction efficiency of the target analytes from water samples and ultrasound‐assisted solvent desorption were optimized by a Box‐Behnken design method. The optimal extraction conditions involved immersing 10.1 mg of a typical octadecyl (C18) bonded silica adsorbent (i.e., ENVI‐18) in a 50 mL water sample. After 10.4 min of extraction by vigorously shaking, the adsorbent was collected and dried on a filter, and the target musks were desorbed by ultrasound‐assisted for 38 sec with n‐hexane (200 μL) as the desorption solvent. A 10 μL aliquot was then directly determined by large‐volume injection GC‐MS. The limits of quantitation (LOQs) were 1.2 to 5 ng/L. The precision for these analytes, as indicated by relative standard deviations (RSDs), were less than 11% for both intra‐ and inter‐day analysis. Accuracy, expressed as the mean extraction recovery, was between 74% and 92%. A preliminary analysis of the effluents from municipal wastewater treatment plants (MWTP) and river water samples revealed that HHCB and AHTN were the two most commonly detected synthetic musks; their concentration were determined to range from 88 to 690 ng/L for effluent samples, and 5 to 320 ng/L for river water samples. This is a simple, low cost, effective, and eco‐friendly analytical method.  相似文献   

5.
The hydrophobic ionic liquid of [BMIM][PF6] was successfully used for the ultrasound‐assisted extraction of hydrophobic magnolol and honokiol from cortex Magnoliae officinalis. To obtain the best extraction efficiencies, some ultrasonic parameters including the concentration of [BMIM][PF6], pH, ultrasonic power and ultrasonic time were evaluated. The results obtained indicated that the [BMIM][PF6]‐based ultrasound‐assisted extraction efficiencies of magnolol and honokiol were greater than those of the [BMIM][BF4]‐based ultrasound‐assisted extraction (from 48.6 to 45.9%) and the traditional ethanol reflux extraction (from 16.2 to 13.3%). Furthermore, the proposed extraction method is validated by the recovery, correlation coefficient (R2) and reproducibility (RSD, n=5), which were 90.8–102.6, 0.9992–0.9998, and 1.6–5.4%, respectively.  相似文献   

6.
A novel and rapid ultrasound‐ and salt‐assisted liquid–liquid extraction coupled with high‐performance liquid chromatography has been optimized by response surface methodology for the determination of oleuropein from olive leaves. Box–Behnken design was used for optimizing the main parameters including ultrasound time (A), pH (B), salt concentration (C), and volume of miscible organic solvent (D). In this technique, a mixture of plant sample and extraction solvent was subjected to ultrasound waves. After ultrasound‐assisted extraction, phase separation was performed by the addition of salt to the liquid phase. The optimal conditions for the highest extraction yield of oleuropein were ultrasound time, 30 min; volume of organic solvent, 2.5 mL; salt concentration, 25% w/v; and sample pH, 4. Experimental data were fitted with a quadratic model. Analysis of variance results show that BC interaction, A2, B2, C2, and D2 are significant model terms. Unlike the conventional extraction methods for plant extracts, no evaporation and reconstitution operations were needed in the proposed technique.  相似文献   

7.
A novel and rapid solventless microwave‐assisted extraction coupled with low‐density solvent‐based in‐tube ultrasound‐assisted emulsification microextraction has been developed for the efficient determination of nine organophosphorus pesticides in soils by GC analysis with microelectron capture detection. A specially designed, homemade glass tube inbuilt with a scaled capillary tube was used as an extraction device to collect and measure the separated extractant phase easily. Parameters affecting the efficiencies of the developed method were thoroughly investigated. From experimental results, the following conditions were selected for the extraction of organophosphorus pesticides from 1.0 g of soil sample to 5 mL of aqueous solution under 226 W of microwave irradiation for 2.5 min followed by ultrasound‐assisted emulsification microextraction with 20 μL toluene for 30 s and then centrifugation at 3200 rpm for 3 min. Detections were linear in the range of 0.25–10 ng/g with detection limits between 0.04 and 0.13 ng/g for all target analytes. The applicability of the method to real samples was assessed on agricultural contaminated soils and the recoveries ranged between 91.4 and 101.3%. Compared to other methods, the present method was shown to be highly competitive in terms of sensitivity, cost, eco‐friendly nature, and analysis speed.  相似文献   

8.
In this work, a general and novel separation technique gas‐assisted three‐liquid‐phase extraction was established and applied in separating and concentrating isoflavonoids from the actual sample of puerariae extract by one step. For the gas‐assisted three‐liquid‐phase extraction method, optimal conditions were selected: polyethylene glycol 2000 and ethyl acetate as the flotation solvent, pH 5, (NH4)2SO4 concentration 350 g/L in aqueous phase, N2 flow rate 30 mL/min, flotation time 50 min, and flotation twice. Five isoflavonoids compounds puerarin, 3′‐methoxydaidzin, puerarinxyloside, daidzin and daidzein were separated with recoveries of 82, 84, 80, 88 and 89%, respectively. The separated products were purified by preparative high‐performance liquid chromatography, and the purity of the final products was >96%. The established general gas‐assisted three‐liquid‐phase extraction was used to separate anthraquinones from Cassiae Semen under the optimal conditions, and the recoveries were >75%. The experimental results showed that the established gas‐assisted three‐liquid‐phase extraction method is a general technique for separating active compounds from herb extract.  相似文献   

9.
A rapid and cost‐effective method based on microwave‐assisted extraction followed by capillary electrophoresis was developed for simultaneous quantification of seven alkaloids in Corydalis decumbens for the first time. The main parameters affecting microwave‐assisted extraction and capillary electrophoresis separation were investigated and optimized. The optimal microwave‐assisted extraction was performed at 40°C for 5 min using methanol/water (90:10, v/v) as the extracting solvent. Electrophoretic separation was achieved within 15 min using an uncoated fused‐silica capillary (50 μm internal diameter and 27.7 cm effective length) and a 500 mM Tris buffer containing 45% v/v methanol (titrated to pH* 2.86 with H3PO4). The developed method was successfully applied to the quantification of seven alkaloids in Corydalis decumbens obtained from different regions of China. The combination of microwave‐assisted extraction with capillary electrophoresis was an effective method for the rapid analysis of the alkaloids in Corydalis decumbens .  相似文献   

10.
The efficiency of two extraction techniques—ultrasound‐assisted extraction and pressurized liquid extraction—are compared and evaluated in the determination of parabens in compost samples. The extraction parameters for each technique were accurately optimized. The selected compounds were detected and quantified using ultra‐performance LC MS/MS, operating in negative ESI and in SRM mode. The analytes were separated in less than 5 min. Ethylparaben (ring‐13C6 labeled) was used as an internal standard. Two selective, sensitive, and accurate analytical methods were developed and validated. The LODs of the methods ranged from 3 to 7 ng/g and the LOQs from 10 to 23 ng/g, while inter‐ and intraday variability was under 6% in all cases. The methods were validated separately by using matrix‐matched calibration and recovery assays with spiked samples. Recovery rates ranged from 94.0 to 105.0%. Compost samples were taken from different composting plants. Although the statistical comparison demonstrated no statistically significant differences between the two extraction techniques, the method based on pressurized liquid extraction was more sensitive than the ultrasound extraction based method.  相似文献   

11.
A high‐efficient and environmental‐friendly method for the preparation of ginsenosides from Radix Ginseng using the method of coupling of ultrasound‐assisted extraction with expanded bed adsorption is described. Based on the optimal extraction conditions screened by surface response methodology, ginsenosides were extracted and adsorbed, then eluted by the two‐step elution protocol. The comparison results between the coupling of ultrasound‐assisted extraction with expanded bed adsorption method and conventional method showed that the former was better than the latter in both process efficiency and greenness. The process efficiency and energy efficiency of the coupling of ultrasound‐assisted extraction with expanded bed adsorption method rapidly increased by 1.4‐fold and 18.5‐fold of the conventional method, while the environmental cost and CO2 emission of the conventional method were 12.9‐fold and 17.0‐fold of the new method. Furthermore, the theoretical model for the extraction of targets was derived. The results revealed that the theoretical model suitably described the process of preparing ginsenosides by the coupling of ultrasound‐assisted extraction with expanded bed adsorption system.  相似文献   

12.
An improved novel method based on ionic liquid vortex‐assisted liquid–liquid microextraction has been developed for the extraction of methylmercury, ethylmercury and inorganic mercury in sediment samples prior to analysis by high‐performance liquid chromatography with cold vapor atomic fluorescence spectrometry. In this work, mercury species were firstly complexed with dithizone, and the complexes were extracted into 1‐hexyl‐3‐methylimidazolium hexafluorophosphate. Key factors that affect the extraction efficiency of mercury species, such as type and amount of ionic liquid and chelatants, extraction time, sample pH, salt effect and matrix effect were investigated. Under the optimum conditions, linearity was found in the concentration range from 0.1–70 ng/g. Limits of detection ranged from 0.037–0.061 ng/g. Reproducibility and recoveries were assessed by extracting a series of six independent sediment samples that were spiked with different concentration levels. Finally, the proposed method was successfully applied in analysis of real sediment samples. In this work, ionic liquids vortex‐assisted liquid–liquid microextraction was for the first time used for the extraction of mercury species in sediment samples. The proposed method was proved to be much simpler and more rapid, as well as more environmentally friendly and efficient compared with the previous methods.  相似文献   

13.
A novel manual‐shaking‐ and ultrasound‐assisted surfactant‐enhanced emulsification microextraction method was developed for the determination of three fungicides in juice samples. In this method, the ionic liquid, 1‐ethyl‐3‐methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, instead of a volatile organic solvent was used as the extraction solvent. The surfactant, NP‐10, was used as an emulsifier to enhance the dispersion of the water‐immiscible ionic liquid into an aqueous phase, which accelerated the mass transfer of the analytes. Organic dispersive solvent typically required in common dispersive liquid–liquid microextraction methods was not necessary. In addition, manual shaking for 15 s before ultrasound to preliminarily mix the extraction solvent and the aqueous sample could greatly shorten the time for dispersing the ionic liquid into aqueous solution by ultrasound irradiation. Several experimental parameters affecting the extraction efficiency, including type and volume of extraction solvent, type and concentration of surfactant, extraction time, and pH, were optimized. Under the optimized conditions, good linearity with the correlation coefficients (γ) higher than 0.9986 and high sensitivity with the limit of detection ranging from 0.4 to 1.6 μg/L were obtained. The average recoveries ranged from 61.4 to 86.0% for spiked juice, with relative standard deviations from 1.8 to 9.7%. The proposed method was demonstrated to be a simple, fast, and efficient method for the analysis of the target fungicides in juice samples.  相似文献   

14.
A series of novel tetramethylguanidinium ionic liquids and hexaalkylguanidinium ionic liquids have been synthesized based on 1,1,3,3‐tetramethylguanidine. The structures of the ionic liquids were confirmed by 1H NMR spectroscopy and mass spectrometry. A green guanidinium ionic liquid based microwave‐assisted extraction method has been developed with these guanidinium ionic liquids for the effective extraction of Praeruptorin A from Radix peucedani. After extraction, reversed‐phase high‐performance liquid chromatography with UV detection was employed for the analysis of Praeruptorin A. Several significant operating parameters were systematically optimized by single‐factor and L9 (34) orthogonal array experiments. The amount of Praeruptorin A extracted by [1,1,3,3‐tetramethylguanidine]CH2CH(OH)COOH is the highest, reaching 11.05 ± 0.13 mg/g. Guanidinium ionic liquid based microwave‐assisted extraction presents unique advantages in Praeruptorin A extraction compared with guanidinium ionic liquid based maceration extraction, guanidinium ionic liquid based heat reflux extraction and guanidinium ionic liquid based ultrasound‐assisted extraction. The precision, stability, and repeatability of the process were investigated. The mechanisms of guanidinium ionic liquid based microwave‐assisted extraction were researched by scanning electron microscopy and IR spectroscopy. All the results show that guanidinium ionic liquid based microwave‐assisted extraction has a huge potential in the extraction of bioactive compounds from complex samples.  相似文献   

15.
An optimized method for the determination of two major carbon‐based engineered nanoparticles (C60 and C70) in marketed fish samples is described. The method involves the use of microwave‐assisted extraction (MAE) coupled with liquid chromatography ‐ tandem mass spectrometry with atmospheric pressure photoionization (LC‐APPI‐MS/MS). Factors affecting the extraction efficiency of the analytes from fish samples were optimized by a central composite design method. The optimal extraction temperature and time for MAE were found to be 233 °C for 22 min, and the extraction solution was composed of toluene and acetone in a ratio of 4.64:1. The limits of quantitation (LOQs) were 0.1 and 0.05 ng/g for C60 and C70, respectively. The precision for these analytes at two spiked levels, as indicated by relative standard deviations (RSDs), were less than 10% for both intra‐ and inter‐day analysis. Accuracy, expressed as the mean extraction recovery, was between 85 and 98%. The method was further validated based on EU Commission Decision 2002/657/EC, including a decision limit (CCα) and detection capability (CCβ) for marketed fish samples.  相似文献   

16.
On‐line continuous sampling, ionic liquid‐based dynamic microwave‐assisted extraction high performance liquid chromatography has been developed and applied to the extraction of lipophilic constituents from root of Salvia miltiorrhiza Bunge. Several operating parameters were optimized by single‐factor and Box–Behnken design experiments. The type and concentration of ionic liquids, power of microwave irradiation, flow rate of sample suspension, amount, and particle size of sample were investigated. The limits of detection for tanshin‐one I, cryptotanshinone, and tanshinone IIA are 0.014, 0.009, and 0.009 mg/g, respectively. The RSDs of interday and intraday were lower than 2.02 and 2.16%, respectively. The recoveries for target analytes were in the range of 90.7–101.8%. The homogeneity of the suspension and stability of the analytes were investigated and the results were satisfactory. The proposed method was compared with the off‐line ionic liquid‐based dynamic microwave‐assisted extraction, off‐line ethanol‐based dynamic microwave‐assisted extraction, ionic liquid‐based ultrasonic‐assisted extraction, and ionic liquid‐based maceration extraction. The results indicated that the proposed method is effective for the extraction of the active components in Chinese herbal medicine and has some advantages over the other methods.  相似文献   

17.
A simple and green sodium dodecyl sulfate‐synergistic microwave‐assisted extraction method was developed to extract and determine the iridoids, phenylpropanoids, and lignans in Eucommiae Cortex followed by ultra‐high‐performance liquid chromatography with photodiode array detection. The biodegradable solution (sodium dodecyl sulfate) was used as a promising alternative to organic solvents. The response surface methodology provided the optimum extraction conditions (2 mg/mL sodium dodecyl sulfate, 1100 W microwave power, and 6 min extraction time). The recoveries of three types of components ranged from 95.0 to 105% (RSDs < 5%). The intra‐ and inter‐day precision and accuracy were less than 3.40% and within the range of 97.1‐105%, respectively. Compared with other extraction methods, this newly established method was more efficient and environmental friendly. The results demonstrated that sodium dodecyl sulfate‐synergistic microwave‐assisted extraction followed by ultra‐high‐performance liquid chromatography with photodiode array method was applicable for the simultaneous extraction and determination of these three types of compounds for quality evaluation of Eucommiae Cortex.  相似文献   

18.
An easy, effective and sensitive analytical method for the simultaneous determination of a novel fungicide pyrametostrobin and its two metabolites pyrametostrobin‐M1 and pyrametostrobin‐M2 in cucumber and soil was developed using a quick, easy, cheap, effective, rugged, and safe method with high‐performance liquid chromatography and tandem mass spectrometry. The extraction solvent was acetonitrile, and cleanup sorbents were primary secondary amine and graphitized carbon black for cucumber samples and primary secondary amine for soil samples. The three target compounds were successfully separated between 3.2 and 3.9 min using a Waters CORTECS™ C18 column connected to an electrospray ionization source. All the matrix‐matched samples at three fortified levels (10, 100 and 1000  μg/kg) provided satisfactory recoveries in the range of 78.8–93.8% with relative standard deviations below 6.9%. The limits of quantitation for the three compounds were below 0.183 μg/kg. The proposed method was validated by analyzing real samples.  相似文献   

19.
The feasibility of developing a quick, easy, efficient procedure for the simultaneous determination of organochlorinated pesticides and polychlorinated biphenyls in aquatic samples using gas chromatography with electron capture detection based on solid‐phase extraction was investigated. The extraction solvent (n‐hexane/acetone, cyclohexane/ethyl acetate, n‐hexane/dichloromethane, n‐hexane) for ultrasound‐assisted solid–liquid extraction and solid‐phase extraction columns (florisil, neutral alumina, acidic alumina, aminopropyl trimethoxy silane, propyl ethylenediamine, aminopropyl trimethoxy silane/propyl ethylenediamine, graphitized carbon black and silica) for cleanup procedure were optimized. The gas chromatography with electron capture detection method was validated in terms of linearity, sensitivity, reproducibility, and recovery. Mean recoveries ranged from 75 to 115% with relative standard deviations <13%. Quantification limits were 0.20–0.40 ng/g for organochlorinated pesticides and polychlorinated biphenyls. The satisfactory data demonstrated the good reproducibility of the method with relative standard deviations lower than 13%. In comparison to other related methods, this method requires less time and solvent and allows for rapid isolation of the target analytes with high selectivity. This method therefore allows for the screening of numerous samples and can also be used for routine analyses.  相似文献   

20.
A novel l‐ phenylalanine molecularly imprinted solid‐phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion‐pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid‐phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l‐ phenylalanine. Under the optimized conditions of the procedure, an analytical method for l‐ phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse‐phase silica gel, the obtained molecularly imprinted polymer as an solid‐phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L?1) for the isolation of l‐ phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion‐pair dummy template imprinting is effective for preparing selective solid‐phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号