首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new kind of magnetic N‐doped mesoporous carbon was prepared by the one‐step carbonization of a hybrid precursor (glucose, melamine, and iron chloride) in a N2 atmosphere with a eutectic salt (KCl/ZnCl2) as the porogen. The obtained magnetic N‐doped mesoporous carbon showed excellent characteristics, such as strong magnetic response, high surface area, large pore volume, and abundant π‐electron system, which endow it with a great potential as a magnetic solid‐phase extraction adsorbent. To evaluate its adsorption performance, the magnetic N‐doped mesoporous carbon was used for the extraction of three phthalate esters from soft drink samples followed by high‐performance liquid chromatographic analysis. Under the optimum conditions, the developed method showed a good linearity (1.0–120.0 ng/mL), low limit of detection (0.1–0.3 ng/mL, S/N = 3), and good recoveries (83.2–119.0%) in soft drink samples. The results indicated that the magnetic N‐doped mesoporous carbon has an excellent adsorption capacity for phthalate esters and the present method is simple, accurate, and highly efficient for the extraction and determination of phthalate esters in complex matrix samples.  相似文献   

2.
In this work, magnetic nanoporous carbon with high surface area and ordered structure was synthesized using cheap commercial silica gel as template and sucrose as the carbon source. The prepared magnetic nanoporous carbon was firstly used as an adsorbent for the extraction of phthalate esters, including diethyl phthalate, diallyl phthalate, and di‐n‐propyl‐phthalate, from lake water and aloe juice samples. Several parameters that could affect the extraction efficiency were optimized. Under the optimum conditions, the limit of detection of the method (S/N = 3) was 0.10 ng/mL for water sample and 0.20 ng/mL for aloe juice sample. The linearity was observed over the concentration range of 0.50–150.0 and 1.0–200.0 ng/mL for water and aloe juice samples, respectively. The results showed that the magnetic nanoporous carbon has a high adsorptive capability toward the target phthalate esters in water and aloe juice samples.  相似文献   

3.
A three‐dimensional graphene was synthesized through a hydrothermal reaction of graphene oxide with phytic acid. The microstructure and morphology of the phytic acid induced three‐dimensional graphene were investigated by nitrogen adsorption–desorption isotherms, scanning electron microscopy, and transmission electron microscopy. With a large surface area and three‐dimensional structure, the graphene was used as the solid‐phase extraction adsorbent for the extraction of phthalate esters from bottled water and sports beverage samples before high‐performance liquid chromatographic analysis. The results indicated that the graphene was efficient for the solid‐phase extraction of phthalate esters. The limits of detection (S/N = 3) of the method for the analytes were 0.02–0.03 ng/mL for the water samples and 0.03–0.15 ng/mL for the sports beverage sample. The limits of quantitation (S/N = 9) for the analytes were 0.06–0.09 ng/mL for water samples and 0.09–0.45 ng/mL for sports beverage sample. The calibration curves for the phthalate esters by the method had a good linearity from 0.1 to 80.0 ng/mL with correlation coefficients larger than 0.9997. The recoveries of the analytes for the method fell in the range of 86.7–116.2% with the relative standard deviations between 1.5 and 6.8%.  相似文献   

4.
The fabrication of novel poly(ionic liquids)‐modified polystyrene (PSt) magnetic nanospheres (PILs‐PMNPs) by a one‐pot miniemulsion copolymerization reaction was achieved through an efficient microwave‐assisted synthesis method. The morphology, structure, and magnetic behavior of the as‐prepared magnetic materials were characterized by using transmission electron microscopy, vibrating sample magnetometry, etc. The magnetic materials were utilized as sorbents for the extraction of phthalate esters (PAEs) from beverage samples followed by high‐performance ultrafast liquid chromatography analysis. Significant extraction parameters that could affect the extraction efficiencies were investigated particularly. Under optimum conditions, good linearity was obtained in the concentration range of 0.5–50 (dimethyl phthalate), 0.3–50 (diethyl phthalate), 0.2–50 (butyl benzyl phthalate), and 0.4–50 μg/L (di‐n‐butyl phthalate), with correlation coefficients R 2 > 0.9989. Limits of detection were in the range 125–350 pg. The proposed method was successfully applied to determine PAEs from beverage samples with satisfactory recovery ranging from 77.8 to 102.1% and relative standard deviations ranging from 3.7 to 8.4%. Comparisons of extraction efficiency with PSt‐modified MNPs as sorbents were performed. The results demonstrated that PILs‐PMNPs possessed an excellent adsorption capability toward the trace PAE analytes.  相似文献   

5.
In this study, magnetized MOF‐74 (Ni) was prepared using an ultrasound‐assisted synthesis method. This novel functional magnetic adsorbent was characterized using various techniques. Using the prepared material as adsorbents, a magnetic solid‐phase extraction method coupled with high‐performance liquid chromatography was proposed for determining four phthalate esters in Chinese liquor samples. The extraction parameters, including solution pH, adsorbent amount, extraction time, and eluent type and volume, were optimized. Under the optimized conditions, proposed method showed good linearity within the range of 1.53–200 μg/L for diphenyl phthalate, 2.03–200 μg/L for butyl benzyl phthalate, 7.02–200 μg/L for diamyl phthalate, and 6.03–200 μg/L for dicyclohexyl phthalate, with correlation coefficients > 0.9944, low limits of detection (0.46–2.10 μg/L, S/N = 3), and good extraction repeatability (relative standard deviations of 3.7%, n = 6). This method was successfully used to analyze phthalate esters in Chinese liquor samples with recoveries of 74.4–104.8%. Two phthalate esters were detected in two samples, both at concentrations that satisfied the Chinese national standard, indicating this method has practical application prospects. The extraction efficiency of this method was also compared with conventional solid‐phase extraction using commercial C18 cartridges. The results demonstrated that the proposed magnetic solid‐phase extraction is a simple, time‐saving, efficient, and low‐cost method.  相似文献   

6.
Fu S  Ding L  Zhu S  Jiao Y  Gong Q  Chen J  Wang L 《色谱》2011,29(8):737-742
建立了磁性多壁碳纳米管(MWCNTs)固相萃取结合气相色谱-质谱检测水样中13种邻苯二甲酸酯类化合物(PAEs)的方法。优化了萃取时间、水样pH值、解吸溶剂的种类和用量、解吸时间等影响萃取效率的主要条件。最终确定萃取时间为10 min,水样pH 5~7,解吸溶剂为2 mL丙酮,解吸时间为5 min。在优化的条件下,各组分的萃取回收率为89.7%~100.5%。方法具有较高的灵敏度,检出限(信噪比(S/N)为3)为0.08~0.47 μg/L。3种实际样品的加标回收率为84.5%~107.5%,相对标准偏差为1.9%~12.8%。该方法操作简便、省时,准确、灵敏、环保,可用于水样中PAEs的检测,并成功地应用于自来水、瓶装饮用水和湖水样品的分析,13种PAEs均未检出。  相似文献   

7.
A porous carbon designated as MOF‐5‐C was prepared by directly carbonizing a metal–organic framework (MOF‐5). The morphology and microstructure of MOF‐5‐C were characterized by scanning electron microscopy, N2 adsorption, and powder X‐ray diffraction. The MOF‐5‐C retained the original porous structures of MOF‐5, and showed a high Brunauer–Emmett–Teller surface area (1808 m2 g?1) and large pore volume (3.05 cm3 g?1). To evaluate its adsorption performance, the MOF‐5‐C was used as an adsorbent for the solid‐phase extraction of four phthalate esters from bottled water, peach juice, and soft drink samples followed by high‐performance liquid chromatographic analysis. Several parameters that could affect the extraction efficiencies were investigated. Under the optimum conditions, a good linearity was achieved in the concentration range of 0.1–50.0 ng mL?1 for bottled water sample and 0.2–50.0 ng mL?1 for peach juice and soft drink samples. The limits of detection of the method (S/N = 3) were 0.02 ng mL?1 for bottled water sample, and 0.04–0.05 ng mL?1 for peach juice and soft drink samples. The results indicated that the MOF‐5‐C exhibited an excellent adsorption capability for trace levels of phthalate esters, and it could be a promising adsorbent for the preconcentration of other organic compounds.  相似文献   

8.
An iron‐embedded porous carbon material (MIL‐53‐C) was fabricated by the direct carbonization of MIL‐53. The MIL‐53‐C possesses a high surface area and good magnetic behavior. The structure, morphology, magnetic property, and porosity of the MIL‐53‐C were studied by scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and N2 adsorption. With the use of MIL‐53‐C as the magnetic solid‐phase extraction adsorbent, a simple and efficient method was developed for the magnetic solid‐phase extraction of three hormones from water and human urine samples before high‐performance liquid chromatography with UV detection. The developed method exhibits a good linear response in the range of 0.02–100 ng/mL for water and 0.5–100 ng/mL for human urine samples , respectively. The limit of detection (S/N = 3) for the analytes was 0.005–0.01 ng/mL for water sample and 0.1–0.3 ng/mL for human urine sample. The limit of quantification (S/N = 10) of the analytes were in the range of 0.015–0.030 and 0.3–0.9 ng/mL, respectively.  相似文献   

9.
A core‐shell structured magnetic polyimide composite has been synthesized by the covalent coating of a mesoporous polyimide polymer onto the surface of magnetite nanoparticles. The nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption‐desorption isotherms, X‐ray diffraction, infrared spectroscopy, and vibrating sample magnetometry. The results showed that the prepared composite had a large surface area (306.45 m²/g), a unique pore size (2.15 nm), and strong magnetic properties (45.7 emμ/g), rendering it a promising sorbent material for magnetic solid‐phase extraction. The parameters that affect the extraction efficiency of rhodamine B were optimized with the assistance of response surface methodology. Under the optimal conditions, the developed method has been successfully applied to determine the rhodamine B in food samples. The linearities and limits of detection of rhodamine B in hot pepper, red wine, and chili powder samples were measured. Satisfactory recoveries in the range of 94.8–103.3% with relative standard deviations <5.5% were obtained. Investigation of the adsorption mechanism of magnetic polyimide composite indicated that multiple interactions, including hydrophobic, π‐π, and hydrogen bonding interactions, were involved in the adsorption process.  相似文献   

10.
We adopted a facile hydrofluoric acid‐free hydro‐/solvothermal method for the preparation of four magnetic iron(III)‐based framework composites (MIL‐101@Fe3O4‐COOH, MIL‐101‐NH2@Fe3O4‐COOH, MIL‐53@Fe3O4‐COOH, and MIL‐53‐NH2@Fe3O4‐COOH). The obtained four magnetic iron(III)‐based framework composites were applied to magnetic separation and enrichment of the fungicides (prochloraz, myclobutanil, tebuconazole, and iprodione) from environmental samples before high‐performance liquid chromatographic analysis. MIL‐101‐NH2@Fe3O4‐COOH showed more remarkable pre‐concentration ability for the fungicides as compared to the other three magnetic iron(III)‐based framework composites. The extraction parameters affecting enrichment efficiency including extraction time, sample pH, elution time, and the desorption solvent were investigated and optimized. Under the optimized conditions, the standard curve of correlation coefficients were all above 0.991, the limits of detection were 0.04–0.4 μg/L, and the relative standard deviations were below 10.2%. The recoveries of two real water samples ranged from 71.1–99.1% at the low spiking level (30 μg/L). Therefore, the MIL‐101‐NH2@Fe3O4‐COOH composites are attractive for the rapid and efficient extraction of fungicides from environmental water samples.  相似文献   

11.
A simple pH‐responsive magnetic solid‐phase extraction method was developed using graphene oxide–coated nanoscale zerovalent iron nanoparticles as an efficient adsorbent prior to high‐performance liquid chromatography‐tandem mass spectrometry for determination of ultra‐trace quinolones in milk samples. Various parameters affecting maghemite synthesis and separation such as pH of sample solution, amount of magnetic adsorbent, eluent type, and volume were optimized. The limits of detection are from 3.1 to 13.3 ng/L. The intra‐ and interprecision values are in the range of 2.9–6.9% and 7.6–15.1%, respectively. Recoveries are from 82.4 to 103.9%. Therefore, this simple and sensitive method is suitable for detecting ultra‐trace quinolone residues in milk.  相似文献   

12.
A novel magnetic porous carbon derived from a bimetallic metal–organic framework, Zn/Co‐MPC, was prepared by introducing cobalt into ZIF‐8. Magnetic porous carbon that possesses magnetic properties and a large specific surface area was firstly fabricated by the direct carbonization of Zn/Co‐ZIF‐8. The prepared magnetic porous carbon material was characterized by scanning electron microscopy, transmission electron microscopy, powder X‐ray diffraction, N2 adsorption, and vibrating sample magnetometry. The prepared magnetic porous carbon was used as a magnetic solid‐phase extraction adsorbent for the enrichment of chlorophenols from water and honey tea samples before high‐performance liquid chromatography analysis. Several experimental parameters that could influence the extraction efficiency were investigated and optimized. Under the optimum conditions, good linearities (r > 0.9957) for all calibration curves were obtained with low limits of detection, which are in the range of 0.1–0.2 ng mL?1 for all the analytes. The results showed that the prepared magnetic porous carbon had an excellent adsorption capability toward the target analytes.  相似文献   

13.
In this study, corn stalk was used to synthesize a magnetic adsorbent by pyrolysis together with KHCO3 as the chemical activator and iron(III) salt as the magnetic reagent. The characterization by scanning electron microscopy, transmission electron microscopy and N2 adsorption–desorption analysis showed that the magnetic carbon adsorbent had a structure of hierarchical pores with a high specific surface area. To evaluate its adsorption performance, the adsorbent was used for the extraction of carbamates pesticides (propoxur, isoprocarb and fenobucarb) from water and zucchini samples before high‐performance liquid chromatography analysis. The result showed that the adsorbent had a good adsorption capability for the analytes. Under the optimized conditions, a good linearity for the analytes existed in the range of 0.1–100.0 ng/mL for water samples and 0.5–100.0 ng/g for zucchini samples with the correlation coefficients of 0.9992–0.9998. The limits of detection for the analytes at a signal to noise ratio of 3 were 0.03 ng/mL for water samples and 0.20–0.50 ng/g for zucchini samples.  相似文献   

14.
Aminosilanized magnetic carbon microspheres as a novel adsorbent were designed and fabricated. The adsorbent was used for the magnetic solid‐phase extraction of bisphenols at trace levels from environmental water samples before liquid chromatography with tandem mass spectrometry analysis. The structure, surface, and magnetic behavior of the as‐prepared aminosilanized magnetic carbon microspheres were characterized by elemental analysis, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, powder X‐ray diffraction, and vibrating sample magnetometry. The effects of the experimental parameters were investigated by the Plackett–Burman design, and then the parameters that were significant to the extraction efficiencies were optimized through a response surface methodology. The aminosilanized magnetic carbon microspheres exhibited high adsorption efficiency and selectivity for bisphenols. Under optimal conditions, low limits of detection (0.011–2.22 ng/L), and a wide linear range (2–3 orders of magnitude), good repeatability (4.7–7.8%, n = 5), and reproducibility (6.0–8.3%, n = 3) were achieved. The results demonstrate that the novel adsorbent possesses great potentials in the determination of trace levels of bisphenols in environmental water samples.  相似文献   

15.
Magnetic CoFe2O4‐embedded porous graphitic carbon nanocomposites were prepared through a facile solid‐phase thermal reaction with NaCl as a template. The material was applied in the magnetic solid‐phase extraction process coupled with high performance liquid chromatography with a diode array detector to detect the trace fenpropathrin, cyhalothrin, S‐fenvalerate, and bifenthrin in different water samples. The synthesis conditions of nanomaterial including glucose concentration and calcination time on extraction performance for pyrethroid pesticides have been investigated. Different magnetic solid‐phase extraction parameters have been studied, such as the nanomaterial amount, solution pH, eluent types, adsorption time, and the reusability. Under the optimum conditions, good recoveries (80.2–110.9%) were achieved with relative standard deviations of 0.2–5.8%. There are probably hydrophobic interactions and dipole–dipole attractions between nanocomposites and the analytes.  相似文献   

16.
We describe a highly sensitive micro‐solid‐phase extraction method for the pre‐concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high‐performance liquid chromatography with a variable‐wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2‐ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting‐out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3–200 μg/L. The limits of detection were 0.04–0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples.  相似文献   

17.
In this study, a magnetic metal–organic framework was synthesized simply and utilized in the dispersive magnetic solid‐phase extraction of five phthalate esters followed by their determination by gas chromatography with mass spectrometry. First, MIL‐101(Cr) was prepared hydrothermally in water medium without using highly corrosive hydrofluoric acid, utilizing an autoclave oven heat supply. Afterward, Fe3O4 nanoparticles were decorated into the matrix of MIL‐101(Cr) to fabricate magnetic MIL‐101 nanocomposite. The nanocomposite was characterized by various techniques. The parameters affecting dispersive magnetic solid‐phase extraction efficiency were optimized and obtained as: a sorbent amount of 15 mg; a sorption time of 20 min; an elution time of 5 min; NaCl concentration, 10% w/v; type and volume of the eluent 1 mL n‐hexane/acetone (1:1 v/v). Under the optimum conditions detection limits and linear dynamic ranges were achieved in the range of 0.08–0.15 and 0.5–200 μg/L, respectively. The intra‐ and interday RSD% values were obtained in the range of 2.5–9.5 and 4.6–10.4, respectively. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of the model analytes in water samples, and human plasma in the range of microgram per liter and satisfactory results were obtained.  相似文献   

18.
A novel magnetic adsorbent Fe3O4/reduced graphene oxide‐carbon nanotubes, was prepared by one‐pot solvothermal synthesis method. It was characterized by scanning electron microscopy, X‐ray powder diffraction and vibrating sample magnetometry. The diameter of Fe3O4 microparticles was about 350 nm, which were covered by carbon nanotubes and reduced graphene oxide sheets, while carbon nanotubes inserted between the reduced graphene oxide sheets effectively prevented their aggregation. The composite had large surface area and good magnetic property, suiting for magnetic solid‐phase extraction and the determination of sulfonamides, by coupling with high‐performance liquid chromatography. Under the optimized conditions (including extraction time, amount of adsorbent, solution pH, ionic strength and desorption conditions), a good linear was achieved in the concentration range of 5–500 μg/L and the low limits of detection and low limits of quantification were 0.35–1.32 and 1.16–4.40 μg/L, respectively. The enrichment factors were estimated to be 24.72 to 30.15 fold. The proposed method was applied for the detection of sulfonamides in milk sample and the recoveries were 88.4–105.9%, with relative standard deviations of 0.74–5.38%.  相似文献   

19.
Magnetic graphitic carbon nitride nanocomposites were successfully prepared in situ and used to develop a highly sensitive magnetic solid‐phase extraction method for the preconcentration of phthalate esters such as di‐n‐butyl phthalate, butyl phthalate, dihexyl phthalate, and di‐(2‐ethyl hexyl) phthalate from water. The adsorption and desorption of the phthalate esters on magnetic graphitic carbon nitride nanocomposites were investigated and the parameters affecting the partition of the phthalate esters, such as adsorption, desorption, recovery, were assessed. Under the optimized conditions, the proposed method showed excellent sensitivity with limits of detection (S/N = 3) in the range of 0.05–0.1 μg/L and precision in the range of 1.1–2.6% (n = 5). This method was successfully applied to the analysis of real water samples, and good spiked recoveries over the range of 79.4–99.4% were obtained. This research provides a possibility to apply this nanocomposite for adsorption, preconcentration, or even removal of various carbon‐based ring or hydrophobic pollutants.  相似文献   

20.
A novel magnetic core–shell material polyaniline@SiO2@Fe (PANI@SiO2@Fe) has been successfully synthesized and investigated as an effective adsorbent for the magnetic solid‐phase extraction of typical endocrine disrupting compounds such as bisphenol A, tetrabromobisphenol A, and 4‐nonylphenol from water samples. The morphology of the as‐prepared PANI@SiO2@Fe was characterized by transmission electron microscopy and X‐ray diffraction. The main parameters that influenced the enrichment performance such as the kind of eluent, amount of adsorbent, volume of eluent, adsorption time, elution time, ionic strength, pH, concentration of humic acid, and sample volume were investigated. Under the optimal conditions, a good linear relationship was found in the range of 0.05–100 μg/L for bisphenol A, 0.05–300 μg/L for tetrabromobisphenol A, and 0.05–250 μg/L for 4‐nonylphenol, respectively. The correlation coefficients are all above 0.995. The limits of detection were in the range of 0.009–0.04 μg/L, and precisions were under 3.73% (n  = 6). The real water analysis indicated that the spiked recoveries were in the range of 92.9–98.9% (n  = 3). All these results indicated that the developed method was an efficient tool for the analysis of bisphenol A, tetrabromobisphenol A, and 4‐nonylphenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号