首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteria‐caused infection remains an issue in the treatment of bone defects by means of Mg‐Zn‐Ca alloy implants. This study aimed to improve the antibacterial properties of an Mg‐Zn‐Ca alloy by coating with chitosan‐based nanofibers with incorporated silver sulfadiazine (AgSD) and multiwall carbon nanotubes (MWCNTs). AgSD and MWCNTs were prepared at a weight ratio of 1:1 and then added to chitosan at varying concentrations (ie, 0, 0.25, 0.5, and 1.5 wt.%) to form composites. The obtained composites were ejected in nanofiber form using an electrospinning technique and coated on the surface of an Mg‐Zn‐Ca alloy to improve its antibacterial properties. A microstructural examination by scanning electron microscopy (SEM) revealed the diameter of chitosan nanofiber ejected increased with the concentration of AgSD‐MWCNTs. The incorporation of AgSD‐MWCNTs into the chitosan nanofibers was confirmed by Fourier transform infrared spectroscopy (FTIR). Examination of the antibacterial activity shows that chitosan nanofibers with AgSD‐MWCNTs can significantly inhibit the growth and infiltration of Escherichia coli and Staphylococcus aureus. Biocompatibility assay and cell morphology observations demonstrate that AgSD‐MWCNTs incorporated into nanofibers are cytocompatible. Taken together, the results of this study demonstrate the potential application of electrospun chitosan with AgSD‐MWCNTs as an antibacterial coating on Mg‐Zn‐Ca alloy implants for bone treatment.  相似文献   

2.
《Analytical letters》2012,45(17):3159-3169
Abstract

The nanocomposites of gold nanoparticles and multi‐walled carbon nanotubes (MWCNTs) have been applied in the enhanced electrochemical detection of DNA hybridization. Gold nanoparticles coated on MWCNTs uniformly were synthesized by simply one step reaction. Target DNA was detected by the peak current difference of differential pulse voltammetry (DPV) signals of the electroactive indicator methylene blue (MB) before and after hybridization on the Au/MWCNTs modified glass carbon electrode (GCE). Due to the excellent electrical conductivity of the novel matrix, the biosensor revealed high sensitivity with the detection level down to 1.0 pM. Excellently selectivity and reproducibility were also discussed.  相似文献   

3.
Electrochemical detection of dopamine (DA) in the presence of a large excess of ascorbic acid (AA) was investigated with a novel all‐carbon nanocomposite film of C60‐MWCNTs (C60‐functionalized multi‐walled carbon nanotubes) using a bare MWCNTs film as control. Although both films can selectively detect DA from AA by separating their oxidation potentials, the C60‐MWCNTs film shows special selectivity and good sensitivity for detecting DA. On one hand, the C60‐MWCNTs composite film shows a higher activity for DA oxidation with enhanced peak current. On the other hand, the C60‐MWCNTs composite film effectively suppresses the oxidation of AA. Remarkably, it is found that the oxidation current of DA is over 2 times higher than that of AA even when the concentration of AA is about 3 to 4 orders of magnitude higher than that of DA. This offers a tremendous advantage for the simple and clean detection of DA free of the interfering AA signal in a real assay. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectrometry are used to characterize the C60‐MWCNTs composite film. These novel properties are interpreted to arise from the facile electron transfer between C60 and MWCNTs in the C60‐MWCNTs nanocomposite film.  相似文献   

4.
《Electroanalysis》2017,29(11):2423-2436
Herein, a facile procedure was developed for designing an electrochemical sensor based on pencil graphite electrode modified with electrochemically synthesized silver and copper nanoparticles (AgNP and CuNP) supported on functionalized multiwalled carbon nanotubes (f MWCNTs). The electrochemical and morphological characterization was carried out by cyclic voltammetry, Electrochemical Impedance Spectroscopy, Powder X‐ray diffraction, Field Emission Scanning Electron Microscopy, Transmission electron microscopy and Atomic Force Microscopy. The designed sensor exhibited electrocatalytic behavior towards the reduction of Imazethapyr. Results indicates the combination of AgNPs, CuNPs and f MWCNTs on PGE produced remarkable enhancement in electrocatalytic and sensing properties. Various electro‐kinetic parameters like Rct, kapp, n, α, E0, k0, Γ, D and k have been evaluated by CV, impedance and Chronoamperometric studies. The electrochemical performance was improved by optimizing the effect of pH, scan rate, amount of f MWCNTs and deposition parameters of AgNP and CuNP. The sensor was efficaciously applied for determination of Imazethapyr and exhibited a linear correlation in the concentration range of 0.01–5.0 μg mL−1 with low detection limits, 0.159 ng mL−1 using AdSWV. The fabricated sensor exhibited good accuracy, acceptable stability and high efficacy for quantitative determination of Imazethapyr in real samples with notable recoveries ranging from 98 % to 100.2 %.  相似文献   

5.
Palladium nanoparticles, in combination with multi‐walled carbon nanotubes (MWCNTs), were used to fabricate a sensitivity‐enhanced electrochemical DNA biosensor. MWCNTs and palladium nanoparticles were dispersed in Nafion, which were used to modify a glassy carbon electrode (GCE). Oligonucleotides with amino groups at the 5′ end were covalently linked onto carboxylic groups of MWCNTs on the electrode. The hybridization events were monitored by differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. Due to the ability of carbon nanotubes to promote electron‐transfer and the high catalytic activities of palladium nanoparticles for electrochemical reaction of MB, the sensitivity of presented electrochemical DNA biosensors was remarkably improved. The detection limit of the method for target DNA was 1.2×10?13 M.  相似文献   

6.
《Electroanalysis》2017,29(2):456-465
A novel, facile fabrication, based on electrochemically reduced graphene oxide (ErGO), grafted with Pt nanoparticles and Nafion hybrid nano‐composite (ErGO‐Pt/Nafion) on the surface of edge plane pyrolytic graphite (EPPG) has been reported. The fabricated sensor has been used for the sensitive and selective determination of efavirenz (EFZ), a well‐known drug for HIV infections. The ErGO‐Pt/Nafion film was characterized by Field Emission Scanning Electron Microscopy (FE‐SEM), Energy‐dispersive X‐ray spectrometry (EDS) and Electrochemical Impedance Spectroscopy (EIS). The experimental results reveal that the modified sensor displays an excellent electrocatalytic activity towards the oxidation of EFZ and exhibits a large linear dynamic relationship in the range of 0.05 μM to 150 μM, with a detection limit of 1.8 nM. Practical utility of the developed sensor has been demonstrated by determining the EFZ in biological fluids and pharmaceutical samples and a low detection limit with high sensitivity observed makes it valuable for the clinical diagnosis.  相似文献   

7.
The functionalized multi‐walled carbon nanotubes (f‐MWCNTs) were obtained by Friedel–Crafts acylation, which introduced aromatic amine groups onto the sidewall. And the grafted yield was adjusted by controlling the concentration of the catalyst. The composite solutions containing f‐MWCNTs and polyacrylonitrile (PAN) were then prepared by in‐situ or ex‐situ solution polymerization. The resulting solutions were electrospun into composite nanofibers. In the in‐situ polymerization, morphological observation revealed that f‐MWCNTs was uniformly dispersed along the axes of the nanofibers and increased interfacial adhesion between f‐MWCNTs and PAN. Furthermore, two kinds of f‐MWCNTs/PAN composite nanofibers had a higher degree of crystallization and a larger crystal size than PAN nanofibers had, so the specific tensile strengths and modulus of the composite nanofibers were enhanced. And the thermal stability of f‐MWCNTs/PAN from in‐situ method was higher than that of ex‐situ system. When the f‐MWCNTs content was less than 1 wt%, the specific tensile strengths and modulus of nanofibers were enhanced with increase in the amounts of f‐MWCNTs, and f‐MWCNTs/PAN of in‐situ system provided better mechanical properties than that of ex‐situ system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
We have successfully fabricated poly(ethylene oxide) (PEO) nanofibers containing embedded multi‐wall carbon nanotubes (MWCNTs). An initial dispersion of the MWCNTs in distilled water was achieved using sodium dodecyl sulfate. Subsequently, the dispersion was decanted into a PEO solution, which enabled separation of the MWCNTs and their individual incorporation into the PEO nanofibers on subsequent electrospinning. Initially, the carbon nanotube (CNT) rods were randomly oriented, but owing to the sink‐like flow in the electrospinning wedge, they became gradually oriented along the streaming direction, in order that oriented CNTs were obtained on entering the electrospun jet. Individual MWCNTs became embedded in the nanofibers, and were mostly aligned along the fiber axis. Evidence of load transfer to the nanotubes in the composite nanofiber was observed from the field‐emission scanning electron microscopy, transmission electron microscopy and conductivity data.  相似文献   

9.
The baclofen‐MWCNTs‐Pd nanocatalyst was synthesized through covalent grafting of baclofen molecules onto surface‐modified carbon nanotubes and immobilizing Pd nanoparticles by the baclofen ligands. The chemical structure of the produced nanocatalyst was studied by Raman spectroscopy, Fourier transform‐infrared spectroscopy, energy‐dispersive spectroscopy (EDS), elemental mapping and inductively coupled plasma analysis. Also, its surface morphology was determined using the scanning and transmission electron microscopy techniques. Furthermore, the obtained baclofen‐MWCNTs‐Pd nanocatalyst is demonstrated to exhibit very high activity as a heterogeneous phosphine‐free catalyst in Sonogashira cross‐coupling of aryl halides by giving good to excellent yields of different products. In addition, the nanocatalyst can be reused four times without any significant leaching or loss of activity.  相似文献   

10.
In the present study, paclitaxel (PTX), multi-walled carbon nanotubes (MWCNTs), and doxorubicin (DOX) have been simultaneously doped into the poly(ϵ-caprolactone) (PCL)/chitosan/zein core-shell nanofibers to increase its cytotoxicity for MCF-7 breast cancers killing. The physico-chemical properties of synthesized nanofibers were determined by scanning electron microscope, Fourier-transform infrared spectroscopy, tensile strength, and degradation rate determinations. The in vitro release studies demonstrated the sustained release of drugs from core-shell nanofibrous scaffold. The cytotoxicity and compatibility of core-shell nanofibers were investigated by their treating with MCF-7 breast cancer cells and L929 normal cells, respectively. PCL/PTX/chitosan/zein/MWCNTs/DOX core-shell nanofibers containing 1 wt% MWCNTs, 100 μg ml−1 DOX and 100 μg ml−1 PTX had a high biocompatibility with a 84% MCF-7 cancer cells killing. The in vivo studies revealed the synergic effects of MWCNTs and anticancer drugs on the tumor inhibition. This method could be considered as a new way for developing of MWCNTs loaded-nanofibers for cancer treatment in future.  相似文献   

11.
Disposable graphite pencil electrodes (PGE) modified with multiwalled carbon nanotubes (MWCNTs)‐streptavidin (STR) conjugates were used for electrochemical monitoring of label‐free DNA hybridization. The surface morphology of PGE electrode before and after hybridization was characterized by scanning electron microscopy. Electrochemical impedance spectroscopy was used to monitor each step of the construction of the DNA biosensor. The biosensor was demonstrated to have excellent selectivity, being able to differentiate complementary sequences from a noncomplementary ones and in addition select the target sequence of DNA from a mixture of other DNA without loss in current sensitivity.  相似文献   

12.
A novel and facile bottom‐up strategy for preparing core‐shell nanofibers with selectively localized carbon nanotubes is developed using hierarchical composite micelles of crystalline‐coil copolymer and carbon nanotubes as the building blocks. An amphiphilic di‐block copolymer of poly (p‐dioxanone) (PPDO) and PEG (polyethylene glycol) functionalized with pyrene moieties at the chain ends of PPDO blocks (Py‐PPDO‐b‐PEG) is designed for constructing composite micelles with multiwalled carbon nanotubes (MWCNTs). The self‐assembly of Py‐PPDO‐b‐PEG and MWCNTs is co‐induced by the crystallization of PPDO blocks and the π–π stacking interactions between pyrene moieties and MWCNTs, resulting in composite micelles with “shish kebab”‐like nanostructure. A mixture of composite micelles and polyvinyl alcohol (PVA) water solution is then used as the spinning solution for preparing electrospun nanofibers. The morphologies of the nanofibers with different composition are investigated by SEM and TEM. The results suggest that the MWCNTs selectively localized in the core of the nanofibers of MWCNTs/Py‐PPDO‐b‐PEG/PVA. The alignment and interfusion of composite micelles during the formation of nanofibers may confine the carbon nanotubes in the hydrophobic core region. In contrast, the copolymer without pyrene moieties cannot form composite micelles, thus these nanofibers show selective localization of MWCNTs in the PVA shell region.

  相似文献   


13.
The development of the methods for early and accurate diagnosis of acute myocardial infarction are needed to facilitate immediate treatment of patients. One of the ways to achieve that is the detection of cardiac biomarkers for myocardial infarction, such as thrombin, cardiac troponins (I and T), myoglobin, etc. Nanotechnology has played an important role in the development of sensitive and efficient electrochemical sensors for cardiac biomarkers. In this review, we discuss recent progress on nanomaterial‐based electrochemical sensing of various cardiac biomarkers for acute myocardial infarction.  相似文献   

14.
《Electroanalysis》2006,18(5):478-484
Cuprous oxide nanowhisker was prepared by using cetyltrimethyl ammonium bromide (CATB) as soft template, and was characterized by XRD and TEM methods. The electrochemical properties of nano‐Cu2O and nano‐Cu2O‐methylene blue (MB) modified electrode were studied. The experimental results indicate that nano‐Cu2O shows a couple of redox peaks corresponding to the redox of Cu(II)/Cu(I), the peak currents are linear to the scan rates which demonstrate that the electrochemical response of Cu2O is surface‐controlled. The composite nano‐Cu2O‐Nafion‐MB modified electrode shows a trend of decrease of peak currents corresponding to the Cu (II)/Cu (I). However, the electrocatalytic ability of nano‐Cu2O‐MB composite film to dopamine increases dramatically. At this composite electrode, dopamine shows a couple of quasireversible redox peaks with a peak separation of 106 mV, the peak current increases about 8 times and the oxidation peak potential decreases about 200 mV as compared to that at bare glassy carbon electrode. The peak currents change linearly with concentration of dopamine from 1×10?7 to 3.2×10?4 mol/L, the detection limit is 4.6×10?8 mol/L. The composite electrode can effectively eliminate the interference of ascorbic acid and has better stability and excellent reproducibility.  相似文献   

15.
This work presented a novel method for specific detection of sulfate-reducing bacteria (SRB) based on the photocatalytic property of ZnS nanoparticles. ZnS semiconductor nanoparticles were synthesized by taking advantage of the characteristic bacterial metabolite, sulfide, and then ZnS nanomaterials were used as photocatalyst for methylene blue (MB) photodegradation. As the amount of ZnS photocatalyst synthesized from microbe metabolized sulfide was affected by initial bacterial concentration before cultivation, the photodegradation ratio of MB was highly related with initial SRB concentration. Under the optimized conditions, a linear relationship between the MB photodegradation ratio and the logarithm of SRB concentration was observed in the range of 1.0 × 103–1.0 × 108 cfu mL−1. Besides, this proposed method showed excellent specificity for SRB detection. To the best of our knowledge, this is the first example of using the photocatalytic property of microbial synthesized ZnS for bacterial detection.  相似文献   

16.
《Electroanalysis》2017,29(10):2246-2253
Electrochemical aptasensors can detect cancer biomarkers such as mucin 1 (MUC1) to provide point‐of‐care diagnosis that is low‐cost, specific and sensitive. Herein, a DNA hairpin containing MUC1 aptamer was thiolated, conjugated with methylene blue (MB) redox tag, and immobilized on a gold electrode by self‐assembly. The fabrication process was characterized by scanning electron microscopy, X‐ray spectroscopy analysis and electrochemistry techniques. The results evidenced a stable and sensitivity sensor presenting wide linear detection range (0.65–110 ng/mL). Therefore, it was able to precisely detect MUC1 production patterns in normal (RWPE‐1) and prostate cancer cells (LNCaP and PC3). The biosensor has ability to detect MUC1 in complex samples being an efficient and useful platform for cancer diagnosing in early stages and for physiological applications such as cancer treatment monitoring.   相似文献   

17.
In the present study, we report a facile method for preparing a porous MWCNTs/ZIF‐67 nanocomposite with the help of a morphology‐maintained ZIF‐67 in situ growth on multi‐walled carbon nanotubes. Interesting, the MWCNTs/ZIF‐67 nanocomposite demonstrated excellent electrochemical activity for hydroquinone (HQ) and catechol (CC) attribute to the effective interconnections ZIF‐67 crystals and MWCNTs. The analytical curves for HQ and CC obtained by differential pulse voltammetry (DPV) were linear in the range from 0.5 to 100 μM. Benefitting from the excellent conductivity of MWCNTs as well as the high surface area and porosity of ZIF‐67, the advanced nanocomposite displayed good reproducibility, high selectivity and excellent stability, and was successfully employed to assay the content of dihydroxybenzene isomers in the lake water samples.  相似文献   

18.
Methylene blue (MB) is a typical photosensitizing agent and a DNA hybridization indicator, but its modes of interaction with the DNA molecules are not clearly described, particularly in relation to its electrochemical oxidation signals. To probe the DNA‐MB interactions we have used chromosomal salmon testes and supercoiled plasmid sc pUC19 DNA immobilized on home‐made screen‐printed electrodes (SPEs) and a wide range of MB concentrations, from nano‐ to micromolar. The applicability of the home‐made screen‐printed electrodes used for the DNA‐MB studies were tested using standard calf thymus DNA. Two MB oxidation peak signals: MB(I) at ca. ?0.18 V and MB(II) at 0 V vs. Ag/AgCl were detected within ±10–15% standard deviation, signals different from adsorbed MB signal (?0.25 V, pH 4.7). The MB(I) signal, seen when both DNAs were used, showed two plateaus, one at nano‐ and another at micromolar MB concentrations; these were accompanied by the changes in the oxidation signal at 0.98 V, usually attributed to guanine oxidation. In contrast, the MB(II) signal was only seen for salmon testes DNA, indicating various modes of MB interactions with chromosomal and plasmid DNA. In the presence of MB, the guanine related signal (G) at 0.98 V has been amplified significantly (10×), allowing for the identification of the DNAs at low DNA concentrations, the feature particularly useful in the plasmid sc pUC19 detection. The use of another DNA intercalator, riboflavin (RF), aided in the identification of the relation between MB(I), MB(II) and G oxidation signals.  相似文献   

19.
A sensitive nitrite (NO2) biosensor was fabricated by using sodium dodecyl sulfate (SDS), Au nanorods, and thionine functionalized MWCNTs (TH‐f‐MWCNTs) nanohybrids modified glassy carbon electrode. TH was covalently immobilized on the MWCNTs via a carbodiimide reaction. Comparing with MWCNTs/GCE, TH‐f‐MWCNTs/GCE displays higher catalytic activity toward the oxidation of NO2, since TH not only promoted the electronic transmission but also could improve the concentration of NO2 at the surface of the modified electrode in acidic solutions. The Au nanorods (AuNRs) were prepared through a simple wet chemical method and were characterized by TEM. The extremely high surface‐to‐volume ratios associated with one dimension nanostructures make their electrical properties extremely sensitive to species adsorbed on surfaces and result in excellent sensitivity and selectivity. SDS displays excellent film forming ability, which made the electrode stable. Under optimal conditions, the linear range for the detection of nitrite was 0.26 to 51 μM, and the low detection limit was 20 nM. In addition, the modified electrode was successfully applied to determine nitrite in real water samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this work a carbon paste electrode modified with multiwalled carbon nanotubes/β‐cyclodextrin (MWCNTs/β‐CD) was constructed and applied to the determination of nifedipine. The electrochemical behavior of nifedipine at this electrode was investigated using cyclic voltammetry and differential pulse voltammetry. Characterization of the modified electrode was conducted with electrochemical impedance spectroscopy and scanning electron microscopy. After adsorption of nifedipine on the MWCNTs/β‐CD paste electrode at 0.0 V for 6 min, a well defined reduction peak was produced in sodium hydroxide of 0.05 M. The calibration curve was linear from 7.0×10?8 to 1.5×10?5 M. The detection limit was obtained as 2.5×10?8 M. The results demonstrated that this electrochemical sensor has excellent sensitivity and selectivity. This sensor was applied for determination of nifedipine in drug dosage and blood serum with excellent recoveries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号