首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
共基质改善MFC处理链霉素废水及产电性能的研究   总被引:1,自引:0,他引:1  
以K_3[Fe(CN)_6]和NaCl混合溶液为阴极液,以驯化的人工湖泊底泥为微生物菌种,以链霉素废水为阳极液,构建微生物燃料电池实验系统,研究添加共基质前后微生物燃料电池的废水处理效果与同步发电性能。结果表明,以链霉素废水为阳极液的微生物燃料电池的产电能力及废水处理效果均较差,并且随着链霉素浓度的增大而进一步恶化;但将葡萄糖作为共基质添加至阳极链霉素废水后,微生物燃料电池的产电能力和废水处理效果均显著提高。链霉素浓度为50 mg/L时,未添加共基质的微生物燃料电池处理链霉素废水的COD去除率为52%,产电电流密度为25 m A/m~2,输出电压为4.72 m V;添加共基质后,COD去除率为92%,稳态产电电流密度为300 m A/m~2,稳态输出电压为54 m V。  相似文献   

2.
《Electroanalysis》2018,30(9):2145-2152
A novel membrane‐less microbial fuel cell (ML‐MFC) which used the baffles instead of the ion exchange membrane (IEM) was developed for ammonium‐containing wastewater treatment and electricity generation. By means of installing an ideal nitrifying unit between the anodic and cathodic chamber, the novel ML‐MFC accomplished organics degradation and nitrogen removal without additional loop. The removal efficiencies of COD, NH4+−N and TN achieved 97.07±0.47 %, 91.76±3.32 % and 87.66±1.59 %, respectively. Meanwhile, the effluent pH was near neutral and turbidity was quite low. In addition, the maximum power density of 1.007±0.032 W/m3 was obtained. Combined with the analysis of microbial community, electroactive bacteria (EAB) Desulfovibrio, Comamonas and Thiobacillus were enriched in biofilm. Considering the superior effluent quality and the promising energy potential, the novel ML‐MFC has good application prospects in efficient and sustainable wastewater treatment.  相似文献   

3.
双极室联合处理啤酒废水的微生物燃料电池   总被引:1,自引:0,他引:1  
构建了双极室连续流联合处理废水的微生物燃料电池(MFC), 该MFC阳极室的出水直接用于阴极室的进水, 利用阴极室的好氧微生物进一步降解有机物. 以啤酒废水作底物, 研究了该MFC的产电性能和废水处理效果. 结果表明, 采用双极室连续流MFC可以大大提高废水的处理效果, 对啤酒废水化学需氧量(COD)的总去除率可达92.2%~95.1%, 其中阳极室中COD去除率为47.6%~56.5%. MFC的开路电压为0.451 V, 最大输出功率为2.89 W/m3. 实验中抑制MFC性能的主要因素是阴极的极化损失, 通过降低进入阴极室溶液的COD浓度、采用优质的阴极材料和加大阴极室内的曝气量等方法进一步优化电池的性能.  相似文献   

4.
Performance of six different microbial fuel cells (MFCs) made from baked clayware, having 450 ml effective anodic chamber volume, was evaluated, with different configurations of separator electrode assemblies, to study the feasibility of bioelectricity generation and high-strength wastewater treatment in a single-chambered mediator-less air-cathode MFC. Superior performance of an air-cathode MFC (ACMFC) with carbon coating on both sides of the separator was observed over an aqueous cathode MFC, resulting in a maximum volumetric power of 4.38 W m?3 and chemical oxygen demand (COD) removal efficiency of more than 90 % in a batch cycle of 4 days. Hydrophilic polymer polyvinyl alcohol (PVA) was successfully used as a binder. The problem of salt deposition and fouling of cathode could be minimized by using a sock net current collector, replacing the usual stainless steel wire. However, electrolyte loss due to evaporation is a problem that needs to be resolved for better performance of an ACMFC.  相似文献   

5.
Microbial fuel cells were designed and operated to treat landfill leachate while simultaneously producing electricity. Two designs were tested in batch cycles using landfill leachate as a substrate without inoculation (908 to 3,200 mg/L chemical oxygen demand (COD)): Circle (934 mL) and large-scale microbial fuel cells (MFC) (18.3 L). A total of seven cycles were completed for the Circle MFC and two cycles for the larger-scale MFC. Maximum power densities of 24 to 31 mW/m2 (653 to 824 mW/m3) were achieved using the Circle MFC, and a maximum voltage of 635 mV was produced using the larger-scale MFC. In the Circle MFC, COD, biological oxygen demand (BOD), total organic carbon (TOC), and ammonia were removed at an average of 16%, 62%, 23%, and 20%, respectively. The larger-scale MFC achieved an average of 74% BOD removal, 27% TOC removal, and 25% ammonia reduction while operating over 52 days. Analysis of the microbial characteristics of the leachate indicates that there might be both supportive and inhibiting bacteria in landfill leachate for operation of an MFC. Issues related to scale-up and heterogeneity of a mixed substrate remain.  相似文献   

6.
Effective wastewater treatment and electricity generation using dual-chamber microbial fuel cell (MFC) will require a better understanding of how operational parameters affect system performance. Therefore, the main aim of this study is to investigate the bioelectricity production in a dual-chambered MFC-operated batch mode under different operational conditions. Initially, platinum (Pt) and mixed metal oxide titanium (Ti-TiO2) electrodes were used to investigate the influence of the electrode materials on the power generation at initial dissolved organic carbon (DOC) concentration of 400 mg/L and cycle time of 15 days. MFC equipped with Ti-TiO2 electrode performed better and was used to examine the effect of influent DOC concentration and cycle time on MFC performance. Increasing influent DOC concentration resulted in improving electricity generation, corresponding to a 1.65-fold increase in power density. However, decrease in cycle time from 15 to 5 days adversely affected reactor performance. Maximum DOC removal was 90?±?3 %, which was produced at 15-day cycle time with an initial DOC of 3,600 mg/L, corresponding to maximum power generation of about 7,205 mW/m2.  相似文献   

7.
To seek an efficient way to enhance the power output and wastewater treatment of microbial fuel cell (MFC), several cobalt‐based composites are successfully synthesized by a facile hydrothermal method under different pyrolysis temperature, and these composites are used as electrocatalyst in air‐breathing cathode of MFC. Different species of nitrogen atom are successfully grafted on the cobalt‐based composites and confirmed by physical and electrochemical analyses. In MFC tests, the maximum power density increases from 577.8 mW m?2 to 931.1 mW m?2 with pyrolysis temperature (except for 1000 °C). These electrochemical tests and high COD removal show that Co/N/C‐900 can rapidly transfer electron via a 2×2 e? transfer pathway, mainly due to the exposure of large electrochemical active area and introduction of the defects of pyridinic?N and abundant oxygen vacancies. Although the power density of MFC with Co/N/C‐900 is 81.1 % of that of commercial Pt/C, the MFC with Co/N/C‐900 is more stable than that of Pt/C, and the power density for Co/N/C‐900 has only a 2.8 % decrease during 25‐cycles operation. The great electrocatalytic activity of the novel Co/N/C‐900 composite exhibits a superior outlook for scale‐up application of MFC in the future.  相似文献   

8.
以不同载量的MnO_2/rGO和Pt/C修饰阴极电极构建了生物阴极型双室微生物燃料电池(MFC),考察了不同阴极催化剂修饰MFC对其产电性能以及老龄垃圾渗滤液主要污染物去除效果的影响。结果表明,以MnO_2/rGO修饰MFC阴极电极材料,能显著提高MFC产电性能及对老龄垃圾渗滤液中污染物去除效果;输出电压为372 mV,功率密度为194 mW/m~3(是未经催化剂修饰MFC的两倍),内阻为264Ω,化学需氧量(COD)和氨氮(NH_3-N)去除率分别为58.68%和76.64%。当MnO_2/rGO载量为.0 mg/cm~2时,MFC性能与负载Pt/C的MFC性能接近,但构建成本却明显降低。  相似文献   

9.
Microbial fuel cells (MFCs) are a type of sustainable technology that may treat wastewater and generate power at the same time. Therefore, researchers are being challenged to design a technically feasible bio electrochemical system that generates environmentally friendly and renewable electricity from waste water. The current research examined at how MFC may be used to generate electricity while treating real dairy wastewater (RDW) with Pseudomonas aeruginosa-MTCC-7814. The experiments were carried out in fed-batch mode for 15 days in two 300 ml single chamber microbial fuel cells (SCMFCs) that were connected in series. During a fed batch investigation, three process parameters such as inoculum percentage, temperature, and pH were optimized. Inoculum percentage, temperature, and pH were found to be optimal at 5%, 37 °C, and 7.4, respectively and the highest open-circuit voltage was found to be 1025 mV. The COD removal efficiency and columbic efficiency (CE) were found to be 95.84% and 37.13% respectively. The optimized fed batch process yielded the maximum current density and power density of 313 mA/m2 and 105 mW/m2, respectively. Thus, this work successfully demonstrates that connecting single chamber microbial fuel cells (SCMFCs) in series is a viable technique for generating sustainable power utilizing Pseudomonas aeruginosa-MTCC-7814 from dairy wastewater.  相似文献   

10.
以玉米秸秆稀酸水解液为阳极底物,用污水处理厂活性污泥为产电微生物菌源构建双室微生物燃料电池(MFC),采用三种不同方法改性阳极碳毡,并对其MFC产电性能进行研究。结果表明,以未改性碳毡(CC)、HNO_3酸解CC(HNO_3/CC)、壳聚糖改性CC(chitosan/CC)、PDADMAC/α-Fe_2O_3层层自组装改性碳毡(PDADMAC/α-Fe_2O_3/CC)的MFC的最大产电量分别为248、315、452和522 mV,最大功率密度分别为54.6、92.7、203.8和248.1 mW/m~2,COD的去除率分别为82.21%、81.46%、82.53%和86.44%。循环伏安曲线显示,PDADMAC/α-Fe_2O_3层层自组装改性的阳极碳毡具有较高的氧化还原电位。电化学阻抗谱图表明,PDADMAC/α-Fe_2O_3层层自组装改性碳毡的极化内阻最小,为7Ω。几种改性材料为阳极的MFC性能依次为PDADMAC/α-Fe_2O_3/CC壳聚糖/CCHNO_3/CC空白CC。  相似文献   

11.
生物燃料电池处理生活污水同步产电特性研究   总被引:1,自引:0,他引:1  
以某生活污水处理厂缺氧池活性污泥为接种体,以葡萄糖为模拟生活废水,构建双室型微生物燃料电池。利用微生物燃料电池(MFC,Microbial fuel cell)实现生活废水降解与同步产电。研究基质降解动力学及温度对MFC电极过程动力学的影响,明确微生物电化学活性、阳极传荷阻抗、阳极电势、电池产能之间的关系,考察库伦效率及COD去除率。研究结果表明,电池功率输出与基质浓度关系遵循莫顿动力学方程:P=Pmaxc/(ks+c),其中,半饱和常数ks为138.5 mg/L,最大功率密度Pmax为320.2 mW/m2。葡萄糖浓度较小时,反应遵循一级动力学规律:-dcA/dt=kcA,k=0.262 h-1。操作温度从20℃提高到35℃,生物膜电化学活性不断提高,传荷阻抗从361.2Ω减小到36.2Ω,阳极电极电势不断降低,同时,峰值功率密度从80.6 mW/m2提高到183.3 mW/m2。45℃时,产电菌活性降低,峰值功率密度减小到36.8 mW/m2。葡萄糖浓度为1 500 mg/L,温度为35℃时,MFC电化学性能最佳,稳定运行6 h后库伦效率为44.6%,COD去除率为49.2%。  相似文献   

12.
A novel in situ N and low‐valence‐state Mo dual doping strategy was employed to significantly improve the conductivity, active‐site accessibility, and electrochemical stability of MoO3, drastically boosting its electrochemical properties. Consequently, our optimized N‐MoO3?x nanowires exhibited exceptional performances as a bifunctional anode material for both fiber‐shaped asymmetric supercapacitors (ASCs) and microbial fuel cells (MFCs). The flexible fiber‐shaped ASC and MFC device based on the N‐MoO3?x anode could deliver an unprecedentedly high energy density of 2.29 mWh cm?3 and a remarkable power density of 0.76 μW cm?1, respectively. Such a bifunctional fiber‐shaped N‐MoO3?x electrode opens the way to integrate the electricity generation and storage for self‐powered sources.  相似文献   

13.
Nitrate ions were used as the oxidant in the cathode chamber of a microbial fuel cell (MFC) to generate electricity from organic compounds with simultaneous nitrate removal. The MFC using nitrate as oxidant could generate a voltage of 111 mV (1,000 Ω) with a plain carbon cathode. The maximum power density achieved was 7.2 mW m−2 with a 470 Ω resistor. Nitrate was reduced from an initial concentration of 49 to 25 mg (NO3−N) L−1 during 42-day operation. The daily removal rate was 0.57 mg (NO3–N) L−1 day−1 with a voltage generation of 96 mV. In the presence of Pt catalyst dispersed on cathode, the cell voltage was significantly increased up to 450 mV and the power density was 117.7 mW m−2, which was 16 times higher than the value without Pt catalyst. Significant nitrate removal was also observed with a daily removal rate of 2 mg (NO3–N) L−1 day−1, which was 3.5 times higher compared with the operation without catalyst. Nitrate was reduced to nitrite and ammonia in the liquid phase at a ratio of 0.6% and 51.8% of the total nitrate amount. These results suggest that nitrate can be successfully used as an oxidant for power generation without aeration and also nitrate removal from water in MFC. However, control of the process would be needed to reduce nitrate to only nitrogen gas, and avoid further reduction to ammonia.  相似文献   

14.
生物膜电极在以苯酚为燃料的微生物燃料电池中的应用   总被引:1,自引:0,他引:1  
以苯酚为燃料, 生物膜电极为负极, Ti/SnO2-Sb2O5/PbO2电极为正极, 构建了双室微生物燃料电池. 利用微电流驯化法和自然驯化法分别制备了生物膜电极, 研究了微生物的挂膜方法、 挂膜时间和负极基底材料种类对微生物燃料电池产电能力的影响. 结果表明, 微电流驯化法优于自然驯化法, 微电流驯化法制备的生物膜电极更利于电池的产电; 微生物的挂膜时间为8 d时, 电池的产电能力最高, 其最大输出功率密度达到39 mW/m2; 不同基底材料生物膜电极所组建的微生物燃料电池产电能力高低顺序为碳毡>石墨>钛网>泡沫钛.  相似文献   

15.
Microbial fuel cell (MFC) technology, as a biological treatment model that can convert antibiotic pollutants into electrical energy, has attracted extensive attention in recent years. Reactor configuration and coupling process play an important role in the treatment of antibiotic wastewater by the MFC, which will affect microbial activity, pollutant removal, and electricity generation. In this review, recent advances of reactor configuration (single chamber, double chamber, and cylinder) and coupling technology (wetland-MFC, sediment-MFC and membrane-MFC, and so on) of the MFC on treating of antibiotics are summarized, and their characteristics in the aspects of pollutant removal and power output are analyzed. Finally, through comparing removal quantity (mg antibiotics per day), the double chamber MFC as the individual treatment unit and the membrane-MFC exhibit better removal quantity.  相似文献   

16.
This objective of this study is to conduct a systematic investigation of the effects of configurations, electrolyte solutions, and electrode materials on the performance of microbial fuel cells (MFC). A comparison of voltage generation, power density, and acclimation period of electrogenic bacteria was performed for a variety of MFCs. In terms of MFC configuration, membrane-less two-chamber MFCs (ML-2CMFC) had lower internal resistance, shorter acclimation period, and higher voltage generation than the conventional two-chamber MFCs (2CMFC). In terms of anode solutions (as electron donors), the two-chamber MFCs fed with anaerobic treated wastewater (AF-2CMFCs) had the power density 19 times as the two-chamber MFCs fed with acetate (NO3 2CMFCs). In terms of cathode solutions (as electron acceptors), AF-2CMFCs with ferricyanide had higher voltage generation than that of ML-2CMFCs with nitrate (NO3 ML-2CMFCs). In terms of electrode materials, ML-2CMFCs with granular-activated carbon as the electrode (GAC-ML-2CMFCs) had a power density 2.5 times as ML-2CMFCs with carbon cloth as the electrode. GAC-ML-2CMFCs had the highest columbic efficiency and power output among all the MFCs tested, indicating that the high surface area of GAC facilitate the biofilm formation, accelerate the degradation of organic substrates, and improve power generation.  相似文献   

17.
微生物燃料电池生物阴极   总被引:1,自引:0,他引:1  
陈立香  肖勇  赵峰 《化学进展》2012,24(1):157-162
微生物燃料电池(microbial fuel cells, MFCs)利用微生物处理废水的同时产电,是一种清洁可再生能源技术。近年来新兴起的生物阴极是指阴极室中的功能微生物附着在电极表面形成生物膜,电子由电极传递给微生物并发生相应的生物电化学反应;是微生物燃料电池研究的一个重要方向。本文根据厌氧、好氧操作体系的不同将生物阴极进行分类;归纳总结了微生物组成、电极和分隔材料的研究进展,探讨了生物阴极在去除污染物和生成高附加值产品中的实际应用,并提出了其将来发展的可能方向。  相似文献   

18.
构建生物阴极型双室微生物燃料电池,处理老龄垃圾渗滤液。研究了阳极与阴极面积比值对微生物燃料电池产电能力和对老龄垃圾渗滤液处理效果的影响。结果表明,阳极与阴极面积比为1:2、2:2、2:1的3组生物阴极型微生物燃料电池输出电压分别为408、452、396mV,最大电功率密度分别为145.73、237.65、136.50mW/m3,内阻分别为350、200、400Ω,COD的去除率分别为21.18%、20.20%、22.31%。3组微生物燃料电池运行30d后,垃圾渗滤液中氨氮、硝酸盐氮、亚硝酸盐氮浓度均下降,其中,氨氮去除率分别为80.88%、73.61%和66.17%,其去除效果与产电性能相关。  相似文献   

19.
ABSTRACT

Removal of COD, and several toxic heavy metals (Cu2+ and Ni2+) from CNC (metalworking fluid) wastewater was investigated using electrocoagulation method (EC) with Fe and Al electrodes. The interaction effects of the current density, reaction time and initial pH were analyzed and were correlated to assess the removal efficiencies for COD, copper, and nickel. Coefficient of determination (R2) and adjusted R2 was found to be higher than 96.81% and 92.77; 99.01% and 89.94 for all responses at Fe and Al electrodes, respectively. Removal efficiencies were determined to be 95.72%, 96.03%, 95.22% and 97.11%, 98.51%, 92.49% for COD, copper and nickel at iron and aluminum electrodes, respectively under optimum operating conditions. The operational cost of the EC process for COD, copper, and nickel removal, were found to be 2.54, 3.36, 2.50 €/m3 for iron electrode and 7.16, 8.95, 8.50 €/m3 for aluminum electrode at optimum conditions, respectively. The results provide that The EC process seems to be an effective treatment method for removing COD and several trace heavy metals from the CNC machine (metalworking fluid) wastewater.  相似文献   

20.
生物阴极微生物燃料电池不同阴极材料产电特性   总被引:6,自引:0,他引:6  
以葡萄糖(COD初始浓度为2000 mg/L, COD为化学需氧量)为阳极燃料底物, 考察了碳纤维刷和柱状活性碳颗粒作为生物阴极微生物燃料电池(MFC)阴极材料的产电性能. 研究结果表明, 碳纤维刷MFC的启动时间比碳颗粒MFC的长, 达到稳定状态后的恒负载(300 Ω)电压(0.324 V)比碳颗粒阴极MFC的(0.581 V)低. 极化分析结果表明, 碳纤维刷MFC和碳颗粒MFC的最大功率密度分别为24.7 W/m3(117.2 A/m3)和50.3 W/m3(167.2 A/m3). 电化学交流阻抗谱(EIS)测定结果表明, 由于电极材料对微生物生长和分布状态存在不同的影响, 使得碳纤维刷阴极MFC的极化内阻大于碳颗粒阴极MFC的极化内阻.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号