首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MS/MS is indispensable for the amino acid sequencing of peptides. However, its use is limited for peptides containing disulfide bonds. We have applied the reducing properties of 1,5-diaminonaphthalene (1,5-DAN) as a MALDI matrix to amino acid sequencing and disulfide bond mapping of human urotensin II possessing one disulfide bond, and human guanylin possessing two disulfide bonds. 1,5-DAN was used in the same manner as the usual MALDI matrices without any pre-treatment of the peptide, and MS/MS was performed using a matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometer (MALDI QIT TOFMS). The results demonstrated that MS/MS of the molecular ions reduced by 1,5-DAN provided a series of significant b-/y-product ions. All 11 amino acid residues of urotensin II were identified using 1,5-DAN, while only 5 out of 11 residues were identified using 2,5-dihydroxybenzoic acid (DHB); similarly 11 out of 15 amino acid residues of guanylin were identified using 1,5-DAN, while only three were identified using DHB. In addition, comparison of the theoretical and measured values of the mass differences between corresponding MS/MS product ions using 1,5-DAN and DHB narrowed down the possible disulfide bond arrangement candidates. Consequently, 1,5-DAN as a reductive matrix facilitates rapid amino acid sequencing and disulfide mapping for peptides containing disulfide bonds.  相似文献   

2.
In our laboratory, we have been studying the reductive processes that occur during matrix-assisted laser desorption/ionization (MALDI) experiments. Recently, we have finished an analysis of the DHB matrix effect on the azo group in cyclic peptides. However, deep understanding of disulfide bond behaviour during a mass spectrometry (MS) experiment is much more important in proteomics as its reduction can cause serious errors in protein spectra interpretation. Therefore, we have focused on intra- and intermolecular disulfide bonds as well as disulfide bonds connecting cysteine and 2-thio-5-nitrobenzoic acid (TNB, Ellman's reagent modification) in model peptides during MALDI MS measurements. While the reduction was not observed for intra- and intermolecular cysteine-cysteine disulfide bonds, the disulfide connection between cysteine and TNB was always affected. It was proved that TNB and Ellman's reagent can act as a matrix itself. The results obtained enabled us to propose a reaction mechanism model which is able to describe the phenomena observed during the desorption/ionization process of disulfide-containing molecules.  相似文献   

3.
A simple and high-throughput method for the identification of disulfide-containing peptides utilizing peptide-matrix adducts is described. Some commonly used matrices in MALDI mass spectrometry were found to specifically react with sulfhydryl groups within peptide, thus allowing the observation of the peptide-matrix adduct ion [M+n+n′ matrix+H]+ or [M+n+n′ matrix+Na]+ (n = the number of cysteine residues, n′=1, 2,…, n) in MALDI mass spectra after chemical reduction of disulfide-linked peptides. Among several matrices tested, α-cyano-4-hydroxycinnamic acid (CHCA, molecular mass 189 Da) and α-cyano-3-hydroxycinnamic acid (3-HCCA) were found to be more effective for MALDI analysis of disulfide-containing peptides/proteins. Two reduced cysteines involved in a disulfide bridge resulted in a mass shift of 189 Da per cysteine, so the number of disulfide bonds could then be determined, while for the other matrices (sinapinic acid, ferulic acid, and caffeic acid), a similar addition reaction could not occur unless the reaction was carried out under alkaline conditions. The underlying mechanism of the reaction of the matrix addition at sulfhydryl groups is proposed, and several factors that might affect the formation of the peptide-matrix adducts were investigated. In general, this method is fast, effective, and robust to identify disulfide bonds in proteins/peptides.  相似文献   

4.
This paper describes a method for the fast identification and composition of disulfide-bonded peptides. A unique fragmentation signature of inter-disulfide-bonded peptides is detected using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass spectrometry and high-energy collision-induced dissociation (CID). This fragmentation pattern identifies peptides with an interconnected disulfide bond and provides information regarding the composition of the peptides involved in the pairing. The distinctive signature produced using CID is a triplet of ions resulting from the cleavage of the disulfide bond to produce dehydroalanine, cysteine or thiocysteine product ions. This method is not applicable to intra-peptide disulfide bonds, as the cleavage mechanism is not the same and a triplet pattern is not observed. This method has been successfully applied to identifying disulfide-bonded peptides in a number of control digestions, as well as study samples where disulfide bond networks were postulated and/or unknown.  相似文献   

5.
Evidence for photo-induced radical disulfide bond scrambling in the gas phase during matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is described. The phenomenon was observed during the analysis of tryptic peptides from insulin and was confirmed in the determination of disulfide bonds in the rhamnose-binding lectin SEL24K from the Chinook salmon Oncorhynchus tshawytscha. A possible mechanism for this surprising scrambling is proposed. Despite this finding, the disulfide bond pattern in SEL24K was assigned unambiguously by a multi-enzyme digestion strategy in combination with MALDI mass spectrometry. The pattern was found to be symmetrical in the tandem repeat sequence of SEL24K. To the best of our knowledge, this is the first report of disulfide bond scrambling in the gas phase during MALDI-MS analysis. This observation has important ramifications for unambiguous assignment of disulfide bonds.  相似文献   

6.
A peptide containing a single disulfide bond was sequenced using high-energy collision-induced dissociation (HE-CID) in conjunction with a high mass resolution time-of-flight tandem mass spectrometer equipped with a matrix-assisted laser desorption/ionization source. This mass spectrometer, which has spiral ion trajectory, allowed both high mass resolution and high precursor ion selectivity. It is difficult to obtain sufficient product ions from peptides containing disulfide bonds using HE-CID due to the single collision in the gas phase. To compensate for insufficient dissociation, the disulfide bond was cleaved via an in-source reduction process using 1,5-diaminonaphthalene, a reducing matrix. After applying the reduction in the ionization, subsequent sequencing using HE-CID provided the detailed structural information of the peptide containing the single disulfide bond.  相似文献   

7.
An information‐rich on‐target performic acid oxidation method, which is compatible with alkylation for differentiation of free cysteine versus disulfide‐containing peptides, is described. On‐target oxidation is achieved using performic acid vapor to oxidize disulfide‐containing peptides and/or small proteins on the matrix‐assisted laser desorption/ionization (MALDI) sample deposits. The on‐target oxidation method is preferred over solution‐phase oxidation methods because (1) less sample handing is required, (2) oxidation throughput is drastically increased and (3) ion suppression effects are reduced because performic acid is not added directly to the MALDI spot. The utility of this method is demonstrated by simultaneous oxidation of multiple MALDI sample deposits containing model disulfide‐linked peptides, intact bovine insulin and a bovine ribonuclease A proteolytic digest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Matrix‐assisted laser desorption/ionization in‐source decay (MALDI‐ISD) is initiated by hydrogen transfer from matrix molecules to the carbonyl oxygen of peptide backbone with subsequent radical‐induced cleavage leading to c′/z? fragments pair. MALDI‐ISD is a very powerful method to obtain long sequence tags from proteins or to do de novo sequencing of peptides. Besides classical fragmentation, MALDI‐ISD also shows specific fragments for which the mechanism of formation enlightened the MALDI‐ISD process. In this study, the MALDI‐ISD mechanism is reviewed, and a specific mechanism is studied in details: the N‐terminal side of Cys residue (Xxx‐Cys) is described to promote the generation of c′ and w fragments in MALDI‐ISD. Our data suggest that for sequences containing Xxx‐Cys motifs, the N–Cα bond cleavage occurs following the hydrogen attachment to the thiol group of Cys side‐chain. The c?/w fragments pair is formed by side‐chain loss of the Cys residue with subsequent radical‐induced cleavage at the N–Cα bond located at the left side (N‐terminal direction) of the Cys residue. This fragmentation pathway preferentially occurs at free Cys residue and is suppressed when the cysteines are involved in disulfide bonds. Hydrogen attachment to alkylated Cys residues using iodoacetamide gives free Cys residue by the loss of ?CH2CONH2 radical. The presence of alkylated Cys residue also suppress the formation of c?/w fragments pair via the (Cβ)‐centered radical, whereas w fragment is still observed as intense signal. In this case, the z? fragment formed by hydrogen attachment of carbonyl oxygen followed side‐chain loss at alkylated Cys leads to a w fragment. Hydrogen attachment on peptide backbone and side‐chain of Cys residue occurs therefore competitively during MALDI‐ISD process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The thiol group of cysteine plays a pivotal role in structural and functional biology. We use mass spectrometry to study glutathione‐related homo‐ and heterodimeric disulfides, aiming at understanding the factors affecting the redox potentials of different disulfide/thiol pairs. Several electrospray ionization (ESI)‐protonated disulfides of cysteamine, cysteine, penicillamine, N‐acetylcysteine, N‐acetylpenicillamine, γGluCySH, HSCyGly, and glutathione were analyzed on a triple quadrupole instrument to measure their energy‐resolved tandem mass spectra. Fission of the disulfide bond yields RSH*H+ and RS+ ions. The logarithm of the intensity ratio of the RS+/RSH*H+ fragments in homodimeric disulfides is proportional to the normal reduction potential of their RSSR/RSH pairs determined by nuclear magnetic resonance (NMR) in solution, the more reducing ones yielding the higher ratios. Also in some R1S‐SR2 disulfides, the ratio of the intensities of the RSH + H+ and RS+ ions of each participating thiol shows a linear relationship with the Nernst equation potential difference of the corresponding redox pairs. This behavior allows us to measure the redox potentials of some disulfide/thiol pairs by using different thiol‐reducing probes of known oxidoreductive potential as reference. To assist understanding of the fission mechanism of the disulfide bond, the fragments tentatively identified as ‘sulfenium’ were themselves fragmented; accurate mass measurement of the resulting second‐generation fragments demonstrated a loss of thioformaldehyde, thus supporting the assigned structure of this elusive intermediate of the oxidative stress pathway. Understanding this fragmentation process allows us to employ this technique with larger molecules to measure by mass spectrometry the micro‐redox properties of different disulfide bonds in peptides with catalytic and signaling biological activity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
In order to investigate gas‐phase fragmentation reactions of phosphorylated peptide ions, matrix‐assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) tandem mass (MS/MS) spectra were recorded from synthetic phosphopeptides and from phosphopeptides isolated from natural sources. MALDI‐TOF/TOF (TOF: time‐of‐flight) spectra of synthetic arginine‐containing phosphopeptides revealed a significant increase of y ions resulting from bond cleavages on the C‐terminal side of phosphothreonine or phosphoserine. The same effect was found in ESI‐MS/MS spectra recorded from the singly charged but not from the doubly charged ions of these phosphopeptides. ESI‐MS/MS spectra of doubly charged phosphopeptides containing two arginine residues support the following general fragmentation rule: Increased amide bond cleavage on the C‐terminal side of phosphorylated serines or threonines mainly occurs in peptide ions which do not contain mobile protons. In MALDI‐TOF/TOF spectra of phosphopeptides displaying N‐terminal fragment ions, abundant b–H3PO4 ions resulting from the enhanced dissociation of the pSer/pThr–X bond were detected (X denotes amino acids). Cleavages at phosphoamino acids were found to be particularly predominant in spectra of phosphopeptides containing pSer/pThr–Pro bonds. A quantitative evaluation of a larger set of MALDI‐TOF/TOF spectra recorded from phosphopeptides indicated that phosphoserine residues in arginine‐containing peptides increase the signal intensities of the respective y ions by almost a factor of 3. A less pronounced cleavage‐enhancing effect was observed in some lysine‐containing phosphopeptides without arginine. The proposed peptide fragmentation pathways involve a nucleophilic attack by phosphate oxygen on the carbon center of the peptide backbone amide, which eventually leads to cleavage of the amide bond. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Desfuroylceftiofur (DFC) is a bioactive beta-lactam antibiotic metabolite that has a free thiol group. Previous experiments have shown release of DFC from plasma extracts after addition of a disulfide reducing agent, suggesting that DFC may be bound to plasma and tissue proteins through disulfide bonds. We have reacted DFC with [Arg(8)]-vasopressin (which has one disulfide bond) and bovine insulin (which has three disulfide bonds) and analyzed the reaction products by use of electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry (ECD FT-ICR MS), which has previously shown preferential cleavage of disulfide bonds. We observe cleavage of DFC from vasopressin and insulin during ECD, suggesting that DFC is indeed bound to peptides and proteins through disulfide bonds. Specifically, we observed dissociative loss of one, as well as two, DFC species during ECD of [vasopressin + 2(DFC-H) + 2H](2+) from a single electron capture event. Loss of two DFCs could arise from either consecutive or simultaneous loss, but in any case implies a gas phase disulfide exchange step. ECD of [insulin + DFC + 4H](4+) shows preferential dissociative loss of DFC. Combined with HPLC, ECD FT-ICR-MS may be an efficient screening method for detection of drug-biomolecule binding.  相似文献   

12.
Matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) can be considered as state of the art in the field of proteins and peptides analysis. In this work, we have designed an ionic liquid derivative strategy to obtain abundant fragment ions in MALDI in-source decay (ISD) and used the analysis of angiogenin with mutation in the fortieth (K40I) as an instance. Firstly, we have synthesized two types of ionic liquids, 3-allyl-4-methyl-1H-imidazol-3-ium and 4-methyl-3-(pent-4-yn-1-yl)-1H-imidazol-3-ium. Then in the light-catalyzed reaction, the alkenyl ionic liquid can open the disulfide bond of K40I protein and add to the thiol. And the derived protein can process in-source decay under the effect of ionic liquid group to produce c–z type ions. Additionally this fragmentation is potentiated to support widely range of fragment ions which can cover the location of mutation. Our results have supplied a new top-down method about how to analyze the mutation or even post-translational modification of proteins in MALDI mass spectrometry.  相似文献   

13.
2‐[(2E)‐3‐(4‐tert‐Butylphenyl)‐2‐methylprop‐2‐enylidene]malononitrile (DCTB) has been considered as an excellent matrix for matrix‐assisted laser desorption/ionization (MALDI) of many types of synthetic compounds. However, it might provide troublesome results for compounds containing aliphatic primary or secondary amino groups. For these compounds, strong extra ion peaks with a mass difference of 184.1 Da were usually observed, which might falsely indicate the presence of some unknown impurities that were not detected by other matrices. On the basis of the possible mechanisms proposed, these extra ions are the products of nucleophilic reactions between analyte amino groups and DCTB molecules or radical cations. In these reactions, an amino group replaces the dicyanomethylene group of DCTB forming a matrix adduct via a ? C?N‐bond. An aliphatic primary amine could react easily with DCTB and the reaction could start once they are mixed in a MALDI solution. For an aliphatic secondary amine, on the other hand, the reaction most likely occurs in the gas phase. Protonation of amino groups by adding acid seems to be a useful way to stop DCTB adduction for compounds with one single amino group, but not for compounds with multiple amino groups. Unlike aliphatic primary or secondary amines, aliphatic tertiary amines and aromatic amines do not yield DCTB adducts. This is because tertiary amines do not have the required transferrable H‐(N) atom to form an extra ? C?N‐bond, while aromatic amines are not sufficiently nucleophilic to attack DCTB. In view of the possible matrix adduction, care should be taken in MALDI time‐of‐flight mass spectrometry (TOF MS) when DCTB is used as the matrix for compounds containing amino group(s). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Bacteriophage (phage) proteins have been analyzed previously with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). However, analysis of phage major capsid proteins (MCPs) has been limited by the ability to reproducibly generate ions from MCP monomers. While the acidic conditions of MALDI‐TOF MS sample preparation have been shown to aid in disassembly of some phage capsids, many require further treatment to successfully liberate MCP monomers. The findings presented here suggest that β‐mercaptoethanol reduction of the disulfide bonds linking phage MCPs prior to mass spectrometric analysis results in significantly increased MALDI‐TOF MS sensitivity and reproducibility of Yersinia pestis‐specific phage protein profiles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The spontaneous reaction of unsaturated double bonds induced by the fragmentation of ether bonds is presented as a method to obtain a crosslinked polymer material. Poly(1,5‐dioxepan‐2‐one) (PDXO) was synthesized using three different polymerization techniques to investigate the influence of the synthesis conditions on the ether bond fragmentation. It was found that thermal fragmentation of the ether bonds in the polymer main chain occurred when the synthesis temperature was 140 °C or higher. The double bonds produced reacted spontaneously to form crosslinks between the polymer chains. The formation of a network structure was confirmed by Fourier transform infrared spectrometry and differential scanning calorimetry. In addition, the low molar mass species released during hydrolysis of the DXO polymers were monitored by ESI‐MS and MALDI‐TOF‐MS. Ether bond fragmentation also occurred during the ionization in the electrospray instrument, but predominantly in the lower mass region. No fragmentation took place during MALDI ionization, but it was possible to detect water‐soluble DXO oligomers with a molar mass up to approximately 5000 g/mol. The results show that ether bond fragmentation can be used to form a network structure of PDXO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7258–7267, 2008  相似文献   

16.
The gas-phase fragmentation mechanisms of small models for peptides containing intermolecular disulfide links have been studied using a combination of tandem mass spectrometry experiments, isotopic labeling, structural labeling, accurate mass measurements of product ions, and theoretical calculations (at the MP2/6-311 + G(2d,p)//B3LYP/3-21G(d) level of theory). Cystine and its C-terminal derivatives were observed to fragment via a range of pathways, including loss of neutral molecules, amide bond cleavage, and S-S and C-S bond cleavages. Various mechanisms were considered to rationalize S-S and C-S bond cleavage processes, including charge directed neighboring group processes and nonmobile proton salt bridge mechanism. Three low-energy fragmentation pathways were identified from theoretical calculations on cystine N-methyl amide: (1) S-S bond cleavage dominated by a neighboring group process involving the C-terminal amide N to form either a protonated cysteine derivative or protonated sulfenyl amide product ion (44.3 kcal mol(-1)); (2) C-S bond cleavage via a salt bridge mechanism, involving abstraction of the alpha-hydrogen by the N-terminal amino group to form a protonated thiocysteine derivative (35.0 kcal mol(-1)); and (3) C-S bond cleavage via a Grob-like fragmentation process in which the nucleophilic N-terminal amino group forms a protonated dithiazolidine (57.9 kcal mol(-1)). Interestingly, C-S bond cleavage by neighboring group processes have high activation barriers (63.1 kcal mol(-1)) and are thus not expected to be accessible during low-energy CID experiments. In comparison to the energetics of simple amide bond cleavage, these S-S and C-S bond cleavage reactions are higher in energy, which helps rationalize why bond cleavage processes involving the disulfide bond are rarely observed for low-energy CID of peptides with mobile proton(s) containing intermolecular disulfide bonds. On the other hand, the absence of a mobile proton appears to "switch on" disulfide bond cleavage reactions, which can be rationalized by the salt bridge mechanism. This potentially has important ramifications in explaining the prevalence of disulfide bond cleavage in singly protonated peptides under MALDI conditions.  相似文献   

17.
Potentially biologically-active nanostructures can be created from single chains of unmodified peptides by cross-linking different regions of the chain by disulfide bonds and cleaving the chain at specified sites to obtain the final configuration. The availability of techniques for assembly and characterization of such structures was tested on a two-loop structure created from a 21-residue linear peptide. Directed intra-molecular disulfide bond formation was performed by inserting partial sequences favoring intra-molecular SS bond formation ("loops") separated by partial sequences disfavoring such a process ("spacers") into the precursor sequence. Peptide bond cleavage by partial acid hydrolysis at specific sites (GG, NP/DP) inside the loops opened them; the same process in the spacer separated the loops. Synthesis, oxidation and bond cleavage were monitored by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI ToF MS). The hydrolysis fragments of the produced nanostructures were characterized by tandem electrospray ionization Fourier transform mass spectrometry (ESI FT-MS) with collisional and electron capture dissociations. The latter technique was especially useful as it cleaves SS bonds preferentially. The feasibility of the proposed synthesis approach and the adequacy of the analysis techniques for the test structure were demonstrated.  相似文献   

18.
The mass spectrometric cleavage of intact disulfide-bonded peptides in conus venom has been investigated. Contryphans containing a single disulfide bond are shown to fragment preferentially at X-Pro bonds, giving rise to linearized, unsymmetrical cystine peptides, which subsequently fragment by multiple pathways at the disulfide bridge. Cleavage at the disulfide bond can be initiated by initial loss of the CalphaH or CbetaH proton, resulting in distinct product ions, with the subsequent loss of elemental sulfur, H2S or H2S2. Contryphans from Conus amadis, Conus loroisii, and Conus striatus are presented as examples, in which detailed assignment of the product ions resulting from tandem mass spectrometric analysis of the intact disulfide is also accomplished. Characteristic fragments arising from conserved contryphan sequences can be used as diagnostic, permitting rapid identification of this class of peptides in crude venom. The observed fragment ions obtained for contryphans in diverse cone snail species are also compared.  相似文献   

19.
Mass spectrometric de novo sequencing of skin secretion peptides from genus Rana is complicated because of C-terminal disulfide cycles present in their structure. Brevinin-1E and brevinin-2Ec from the skin secretion of the Marsh Frog R. ridibunda were used for a comparative study of six N-phenylmaleimide derivatives as new alkylating agents for cysteine thiol moieties. The paper describes the synthesis and confirmation of the structures of the obtained compounds. A procedure was developed for modifying thiol groups with the proposed reagents. Alkylation efficiency and the effect on the peak intensity in matrix-assisted laser desorption/ionization (MALDI) spectra were investigated. The best results were obtained for 2,4- and 2,5-dimethylphenylmaleimides. Additionally tested iodoacetic acid was shown to be a powerful modifier of thiol groups, while its excess notably increases the intensities of the peaks of protonated molecules in the MALDI mass spectra of both peptides.  相似文献   

20.
MALDI mass spectrometry imaging (MSI) enables analysis of peptides along with histology. However, there are several critical steps in MALDI MSI of peptides, 1 of which is spectral quality. Suppression of MALDI matrix clusters by the aid of ammonium salts in MALDI experiments is well known. It is asserted that addition of ammonium salts dissociates potential matrix adducts and thereafter decreases matrix cluster formation. Consequently, MALDI MS sensitivity and mass accuracy increase. Up to our knowledge, a limited number of MALDI MSI studies used ammonium salts as matrix additives to suppress matrix clusters and enhance peptide signals. In this work, we investigated the effect of ammonium phosphate monobasic (AmP) as alpha‐cyano‐4‐hydroxycinnamic acid (α‐CHCA) matrix additive in MALDI MSI of peptides. Prior to MALDI MSI, the effect of varying concentrations of AmP in α‐CHCA was assessed in bovine serum albumin tryptic digests and compared with the control (α‐CHCA without AmP). Based on our data, the addition of AmP as matrix additive decreased matrix cluster formation regardless of its concentration, and specifically, 8 mM AmP and 10 mM AmP increased bovine serum albumin peptide signal intensities. In MALDI MSI of peptides, both 8 and 10 mM AmP in α‐CHCA improved peptide signals especially in the mass range of m/z 2000 to 3000. In particular, 9 peptide signals were found to have differential intensities within the tissues deposited with AmP in α‐CHCA (AUC > 0.60). To the best of our knowledge, this is the first MALDI MSI of peptides work investigating different concentrations of AmP as α‐CHCA matrix additive to enhance peptide signals in formalin‐fixed paraffin‐embedded (FFPE) tissues. Further, AmP as part of α‐CHCA matrix could enhance protein identifications and support MALDI MSI‐based proteomic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号