首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For CeO2 or M‐doped CeO2 catalysts, reliable energetics associated with surface reactivity requires accurate representation of oxidized and reduced metal states. Density functional theory (DFT) is used extensively for metals and metal oxides; however, for strongly correlated electron materials, conventional DFT fails to predict both qualitative and quantitative properties. This is the result of a localized electron self‐interaction error that is inherit to DFT. DFT+U has shown promise in correcting energetic errors due to the self‐interaction error, however, its transferability across processes relevant to surface catalysis remains unclear. Hybrid functionals, such as HSE06, can also be used to correct this self‐interaction error. These hybrid functionals are computationally intensive, and especially demanding for periodic surface slab models. This perspective details the challenges in representing the energetics of M‐doped ceria catalyzed processes and examines using DFT extensions to model the localized electronic properties. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
A benchmark study on all possible density functional theory (DFT) methods in Gaussian09 is done to locate functionals that agree well with CCSD/aug‐cc‐pVTZ geometry and Ave‐CCSD(T)/(Q‐T) interaction energy (Eint) for small non‐covalently interacting molecular dimers in “dispersion‐dominated” (class 1), “dipole‐induced dipole” (class 2), and “dipole‐dipole” (class 3) classes. A DFT method is recommended acceptable if the geometry showed close agreement to CCSD result (RMSD < 0.045) and Eint was within 80–120% accuracy. Among 382 tested functionals, 1–46% gave good geometry, 13–44% gave good Eint, while 1–33% satisfied geometry and energy criteria. Further screening to locate the best performing functionals for all the three classes was made by counting the acceptable values of energy and geometry given by each functionals. The meta‐generalized gradient approximation (GGA) functional M06L was the best performer with total 14 hits; seven acceptable energies and seven acceptable geometries. This was the only functional “recommended” for at least two dimers in each class. The functionals M05, B2PLYPD, B971, mPW2PLYPD, PBEB95, and CAM‐B3LYP gave 11 hits while PBEhB95, PW91B95, Wb97x, BRxVP86, BRxP86, HSE2PBE, HSEh1PBE, PBE1PBE, PBEh1PBE, and PW91TPSS gave 10 hits. Among these, M05, B971, mPW2PLYPD, Wb97x, and PW91TPSS were among the “recommended” list of at least one dimer from each class. Long‐range correction (LC) of Hirao and coworkers to exchange‐correlation functionals showed massive improvement in geometry and Eint. The best performing LC‐functionals were LC‐G96KCIS and LC‐PKZBPKZB. Our results predict that M06L is the most trustworthy DFT method in Gaussian09 to study small non‐covalently interacting systems. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The prediction of magnetic behavior is important for the design of new magnetic materials. Kohn–Sham density functional theory is popular for this purpose, although one should be careful about choosing the right exchange–correlation functional. Here, we perform a statistical analysis to test different range‐separated hybrid density functionals for the calculation of magnetic exchange coupling constants J of fourteen organic diradicals. Our analysis suggests that in absolute terms the MN12SX functional performs best among the series of twelve functionals studied here (including the popular B3LYP), followed by N12SX functionals along with Scuseria's HSE series of functionals. LC‐ PBE was found to be the least accurate, which is in contrast with its good performance for calculating J for transition metal complexes. The HSE family of functionals and B3LYP are the only functionals to reproduce the qualitative trends of the coupling constants correctly for the ferromagnetically coupled diradicals under study. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
Density functional theory (DFT) calculations with different exchange‐correlation functionals were performed for a mixed valence Fe(II)/Fe(III) binuclear complex with μ‐methoxo and two μ‐carboxylate bridging ligands, (1) with geometry optimizations being performed for all possible spin multiplicities (MS = 2, 4, 6, 8, and 10). Within the exchange‐correlation functionals studied, only the hybrid GGA functionals B3P and B3LYP and also the pure GGA functional RPBE, predicts the geometry with high spin (S = 9/2) to be more stable than the geometry with low spin state (S = 1/2) by 20 kcal/mol, in agreement with the experimental findings. These functionals also predict the same stability order for the different spin states, being MS = 10>8>6>2>4. The meta‐GGA functionals TPSS and TPSSh and also the pure GGA functionals BLYP and BP86 predict different stability orders. The computed average EPR g‐tensor, gav, of 2.03, at the B3LYP level, is in good agreement with the experimental findings. Heisenberg exchange coupling constants, J, were calculated within the broken‐symmetry formalism, at the B3LYP level, showing that the two iron centers are antiferromagnetic coupling, with a very weak coupling constant of about ?7 cm?1, in good agreement with the experimental value. Additionally, the effect of using different multiplicities of the reference geometries on the computed J value is discussed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

5.
6.
Time dependent density functional theory calculations are completed for five Ni(II) complexes formed by polydentate peptides to predict the electronic absorption spectrum. The ligands examined were glycyl‐glycyl‐glycine (GGG), glycyl‐glycyl‐glycyl‐glycine (GGGG), glycyl‐glycyl‐histidine (GGH), glycyl‐glycyl‐cysteine (GGC), and triethylenetetramine (trien). Fifteen functionals and two basis sets were tested. On the basis of the mean absolute percent deviation (MAPD), the ranking among the functionals is: HSE06 ∼ MPW1PW91 ∼ PBE0 > ω‐B97x‐D ∼ B3P86 ∼ B3LYP ∼ CAM‐B3LYP > PBE ∼ BLYP ∼ BP86 > TPSS > TPSSh > BHandHLYP > M06 ≫ M06‐2X. Concerning the basis sets, the triple‐ζ def2‐TZVP performs better than the double‐ζ LANL2DZ. With the functional HSE06 and basis set def2‐TZVP the MAPD with respect to the experimental λmax is 1.65% with a standard deviation of 1.26%. The absorption electronic spectra were interpreted in terms of vertical excitations between occupied and virtual MOs based on Ni‐d atomic orbitals. The electronic structure of the Ni(II) species is also discussed.  相似文献   

7.
8.
Density functional theory (DFT), using the most common functionals, and ab initio quantum chemistry methods are used to calculate the rotational constants and dipole moments of the astrophysically important molecules HCN, CH3CN, CH3CNH+, HCCCN, and HCCNC. As far as millimeter‐wave spectroscopy is of interest the DFT methods performed well with most functionals, giving results within ±1% of experiments for rotational constants and ±3% for dipole moments. Analyzing the results obtained with all theoretical models, it may be concluded that the Becke's three‐parameter exchange functional and the gradient‐corrected functional of Lee, Yang, and Paar (B3LYP) and Becke's three‐parameter functional with Perdew–Wang correlational functional [B3PW91/6‐31G(d, p)] give the best performances. A detailed analysis of the electron correlation effects shows that HCCCN is more stable than is HCCNC, by 1.16 eV, with important contribution arising from triple excitations. This result is also compared with those obtained with DFT methods. Despite occasional difficulties, DFT with the currently available functionals are of great utility in quickly assessing spectroscopic parameters of astrophysical interest. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

9.
In this study, 12 bound complexes were selected to construct a database for testing 15 dispersion‐improved exchange‐correlation (XC) functionals, including hybrid generalized gradient approximation (GGA), modified using the Grimme's pairwise strategy, and double hybrid XC functionals, for specifically characterizing the CO2 binding by alcoholamines. Bound complexes were selected based on the characteristics of their hydrogen bonds, dispersion, and electrostatic (particularly between the positive charge of CO2 and the lone pair of N of alcoholamines) interactions. The extrapolated binding energy from the aug‐cc‐pVTZ (ATZ) to aug‐cc‐pVQZ (AQZ) basis set at the CCSD(T)/CBS(MP2+DZ) level was used as the reference for the XC functional comparison. M06‐2X produced the optimal agreement if the optimized geometries at MP2/ATZ level were chosen for all the test bound complexes. However, M06‐L, ωB97X, and ωB97, and were preferred if the corresponding density functional theory (DFT) optimized geometries were adapted for the benchmark. Simple bimolecular reaction between CO2 and monoethanolamine simulated using polarizable continuum solvation model confirmed that ωB97, ωB97X, and ωB97XD qualitatively reproduced the energetics of MP2 level. The inconsistent performance of the tested XC functionals, observed when using MP2 or DFT optimized geometries, raised concerns regarding using the single‐point ab initio correction combined with DFT optimized geometry, particularly for determining the nucleophilic attack by alcoholamines to CO2. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Following up on an earlier preliminary communication (Kozuch and Martin, Phys. Chem. Chem. Phys. 2011, 13 , 20104), we report here in detail on an extensive search for the most accurate spin‐component‐scaled double hybrid functionals [of which conventional double hybrids (DHs) are a special case]. Such fifth‐rung functionals approach the performance of composite ab initio methods such as G3 theory at a fraction of their computational cost, and with analytical derivatives available. In this article, we provide a critical analysis of the variables and components that maximize the accuracy of DHs. These include the selection of the exchange and correlation functionals, the coefficients of each component [density functional theory (DFT), exact exchange, and perturbative correlation in both the same spin and opposite spin terms], and the addition of an adhoc dispersion correction; we have termed these parametrizations “DSD‐DFT” (Dispersion corrected, Spin‐component scaled, Double‐hybrid DFT). Somewhat surprisingly, the quality of DSD‐DFT is only mildly dependent on the underlying DFT exchange and correlation components, with even DSD‐LDA yielding respectable performance. Simple, nonempirical GGAs appear to work best, whereas meta‐GGAs offer no advantage (with the notable exception of B95c). The best correlation components appear to be, in that order, B95c, P86, and PBEc, while essentially any good GGA exchange yields nearly identical results. On further validation with a wider variety of thermochemical, weak interaction, kinetic, and spectroscopic benchmarks, we find that the best functionals are, roughly in that order, DSD‐PBEhB95, DSD‐PBEP86, DSD‐PBEPW91, and DSD‐PBEPBE. In addition, DSD‐PBEP86 and DSD‐PBEPBE can be used without source code modifications in a wider variety of electronic structure codes. Sample job decks for several commonly used such codes are supplied as electronic Supporting Information. Copyright © 2013 Wiley Periodicals, Inc.  相似文献   

11.
In the present study, we have investigated two significant features of the OP correlation functional, namely the incorporation of the exchange functional into itself, and the inclusion of only opposite‐spin (OS) effects. To explore the latter feature, we have compared OP with B95 and a new functional introduced in the present study – the OPB method that combines OP with the same‐spin (SS) component of B95. In general, we find that B95 and OPB perform comparably. Our comparisons of the various DFT procedures suggest that the incorporation of a meta‐GGA (e.g., TPSS) into OP and OPB does not necessarily lead to a chemically more accurate procedure than the use of a related GGA (e.g., PBE). An important finding is the more notable (and somewhat more consistent) improvement in performance with the incorporation of SS correlation, particularly for longer‐range chemical properties. Nonetheless, on average across our test sets of over 800 systems, the difference between the performances of OP versus B95 or OPB is not exceedingly large. By drawing a parallel between these DFT methods and the wavefunction scaled‐MP2‐type methods, we reason that one can further develop the OP functional, and perhaps a wider range of correlation functionals by combining it with the technique of range separation. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
The Heyd-Scuseria-Ernzerhof (HSE) density functionals are popular for their ability to improve upon the accuracy of standard semilocal functionals such as Perdew-Burke-Ernzerhof (PBE), particularly for semiconductor band gaps. They also have a reduced computational cost compared to hybrid functionals, which results from the restriction of Fock exchange calculations to small inter-electron separations. These functionals are defined by an overall fraction of Fock exchange and a length scale for exchange screening. We systematically examine this two-parameter space to assess the performance of hybrid screened exchange (sX) functionals and to determine a balance between improving accuracy and reducing the screening length, which can further reduce computational costs. Three parameter choices emerge as useful: "sX-PBE" is an approximation to the sX-LDA screened exchange density functionals based on the local density approximation (LDA); "HSE12" minimizes the overall error over all tests performed; and "HSE12s" is a range-minimized functional that matches the overall accuracy of the existing HSE06 parameterization but reduces the Fock exchange length scale by half. Analysis of the error trends over parameter space produces useful guidance for future improvement of density functionals.  相似文献   

13.
In this study, we use a very simple scheme to achieve range separation of a total exchange–correlation functional. We have utilized this methodology to combine a short‐range pure density functional theory (DFT) functional with a corresponding long‐range pure DFT, leading to a “Range‐separated eXchange–Correlation” (RXC) scheme. By examining the performance of a range of standard exchange–correlation functionals for prototypical short‐ and long‐range properties, we have chosen B‐LYP as the short‐range functional and PBE‐B95 as the long‐range counterpart. The results of our testing using a more diverse range of data sets show that, for properties that we deem to be short‐range in nature, the performance of this prescribed RXC‐DFT protocol does resemble that of B‐LYP in most cases, and vice versa. Thus, this RXC‐DFT protocol already provides meaningful numerical results. Furthermore, we envisage that the general RXC scheme can be easily implemented in computational chemistry software packages. This study paves a way for further refinement of such a range‐separation technique for the development of better performing DFT procedures. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
The present work introduces an efficient screening technique to take advantage of the fast spatial decay of the short range Hartree-Fock (HF) exchange used in the Heyd-Scuseria-Ernzerhof (HSE) screened Coulomb hybrid density functional. The screened HF exchange decay properties and screening efficiency are compared with traditional hybrid functional calculations on solids. The HSE functional is then assessed using 21 metallic, semiconducting, and insulating solids. The examined properties include lattice constants, bulk moduli, and band gaps. The results obtained with HSE exhibit significantly smaller errors than pure density functional theory (DFT) calculations. For structural properties, the errors produced by HSE are up to 50% smaller than the errors of the local density approximation, PBE, and TPSS functionals used for comparison. When predicting band gaps of semiconductors, we found smaller errors with HSE, resulting in a mean absolute error of 0.2 eV (1.3 eV error for all pure DFT functionals). In addition, we present timing results which show the computational time requirements of HSE to be only a factor of 2-4 higher than pure DFT functionals. These results make HSE an attractive choice for calculations of all types of solids.  相似文献   

15.
The equilibrium geometries, harmonic frequencies, dipole moments, infrared intensities, and relative energies of the cis-XONO, trans-XONO, and XNO2 (X=F, Cl, and Br) have been investigated using four functionals in common use in Kohn-Sham density functional theory (DFT) calculations. Two of the functionals include non-local or gradient correction terms, while the other two also incorporate some exact Hartree-Fock exchange and are labeled hybrid functionals. The quality of the results obtained from the functionals is determined by comparison to previously published high-level coupled-cluster calculations. The hybrid functionals perform better for prediction of the equilibrium geometries, where the two gradient corrected functionals yield qualitatively incorrect molecular structures for cis-FONO and cis-ClONO. None of the functionals perform well in predicting all six harmonic frequencies, showing that the correlation between equilibrium geometries and harmonic frequencies is not as strong for these DFT methods as it is for conventional wavefunction ab initio methods, such as coupled-cluster theory. Results from the various functionals generally come into better agreement with each other and also with the coupled-cluster results moving down the periodic table. Received: 12 February 1997 / Accepted: 25 March 1997  相似文献   

16.
Static excited‐state polarisabilities and hyperpolarisabilities of three RuII ammine complexes are computed at the density functional theory (DFT) and several correlated ab initio levels. Most accurate modelling of the low energy electronic absorption spectrum is obtained with the hybrid functionals B3LYP, B3P86 or M06 for the complex [RuII(NH3)5(MeQ+)]3+ (MeQ+=N‐methyl‐4,4′‐bipyridinium, 3 ) in acetonitrile. The match with experimental data is less good for [RuII(NH3)5L]3+ (L=N‐methylpyrazinium, 2 ; N‐methyl‐4‐{E,E‐4‐(4‐pyridyl)buta‐1,3‐dienyl}pyridinium, 4 ). These calculations confirm that the first dipole‐ allowed excited state (FDAES) has metal‐to‐ligand charge‐transfer (MLCT) character. Both the solution and gas‐phase results obtained for 3 by using B3LYP, B3P86 or M06 are very similar to those from restricted active‐space SCF second‐order perturbation theory (RASPT2) with a very large basis set and large active space. However, the time‐dependent DFT λmax predictions from the long‐range corrected functionals CAM‐B3LYP, LC‐ωPBE and wB97XB and also the fully ab initio resolution of identity approximate coupled‐cluster method (gas‐phase only) are less accurate for all three complexes. The ground state (GS) two‐state approximation first hyperpolarisability β2SA for 3 from RASPT2 is very close to that derived experimentally via hyper‐Rayleigh scattering, whereas the corresponding DFT‐based values are considerably larger. The β responses calculated by using B3LYP, B3P86 or M06 increase markedly as the π‐conjugation extends on moving along the series 2 → 4 , for both the GS and FDAES species. All three functionals predict substantial FDAES β enhancements for each complex, increasing with the π‐conjugation, up to about sevenfold for 4 . Also, the computed second hyperpolarisabilities γ generally increase in the FDAES, but the results vary between the different functionals.  相似文献   

17.
The structural, electronic, and vibrational properties of two leading representatives of the Zn-based spinel oxides class, normal ZnX2O4 (X = Al, Ga, In) and inverse Zn2MO4 (M = Si, Ge, Sn) crystals, were investigated. In particular, density functional theory (DFT) was combined with different exchange-correlation functionals: B3LYP, HSE06, PBE0, and PBESol. Our calculations showed good agreement with the available experimental data, showing a mean percentage error close to 3% for structural parameters. For the electronic structure, the obtained HSE06 band-gap values overcome previous theoretical results, exhibiting a mean percentage error smaller than 10.0%. In particular, the vibrational properties identify the significant differences between normal and inverse spinel configurations, offering compelling evidence of a structure-property relationship for the investigated materials. Therefore, the combined results confirm that the range-separated HSE06 hybrid functional performs the best in spinel oxides. Despite some points that cannot be directly compared to experimental results, we expect that future experimental work can confirm our predictions, thus opening a new avenue for understanding the structural, electronic, and vibrational properties in spinel oxides.  相似文献   

18.
In recent years, there has been an increased interest in understanding the enzymatic mechanism of glycosidases resorting mostly to DFT and DFT/MM calculations. However, the performance of density functionals (DFs) is well known to be system and property dependent. Trends drawn from general studies, despite important to evaluate the quality of the DFs and to pave the way for the development of new DFs, may be misleading when applied to a single specific system/property. To overcome this issue, we carried out a benchmarking study of 40 DFs applied to the geometry optimization and to the electronic barrier height (E Barrier) and electronic energy of reaction (E R) of prototypical glycosidase‐catalyzed reactions. Additionally, we report calculations with SCC‐DFTB and four semiempirical MO methods applied to the same problem. We have used a universal molecular model for retaining glycosidases, comprising only a 22‐atoms system that mimics the active site and substrate. High accuracy reference geometries and energies were calculated at the CCSD(T)/CBS//MP2/aug‐cc‐pVTZ level of theory. Most DFs reproduce the reference geometries extremely well, with mean unsigned errors (MUE) smaller than 0.05 Å for bond lengths and 3° for bond angles. Among the DFs, wB97X‐D, CAM‐B3LYP, B3P86, and PBE1PBE have the best performance in geometry optimizations (MUE = 0.02 Å). Conversely, semiempirical MO and SCC‐DFTB methods yielded less accurate geometries (MUE between 0.09 and 0.17 Å). The inclusion of D3 correction has a small, but still relevant, influence in the geometry predicted by some DFs. Regarding E Barrier, 11 DFs (MPW1B95, CAM‐B3LYP, M06 ‐ 2X, PBE1PBE, wB97X ‐ D, B1B95, BMK, MN12 – SX, M05, M06, and M11) presented errors below 1 kcal.mol?1, in relation to the reference energy. Most of these functionals belong to the family of hybrid functionals (H‐GGA, HH‐GGA, and HM‐GGA), which shows a positive influence of HF exchange in the determination of E Barrier. The inclusion of D3 correction has not affected significantly the E Barrier and E R. The use of geometries at the accurate but expensive MP2/aug‐cc‐pVTZ level of theory has a small, albeit not insignificant, influence in the E Barrier when compared with energies calculated with geometries determined with the DFs (usually a few tenths of kcal.mol?1, with exceptions). In general, semiempirical MO methods and DFTB are associated with larger errors in the determination of E Barrier, with unsigned errors from 6.9 to 24.7 kcal.mol?1.  相似文献   

19.
We applied an improved long‐range correction scheme including a short‐range Gaussian attenuation (LCgau) to the Becke97 (B97) exchange correlation functional. In the optimization of LCgau‐B97 functional, the linear parameters are determined by least squares fitting. Optimizing μ parameter (0.2) that controls long‐range portion of Hartree‐Fock (HF) exchange to excitation energies of large molecules (Chai and Head‐Gordon, J Chem Phys 2008, 128, 084106) and additional short‐range Gaussian parameters (a = 0.15 and k = 0.9) that controls HF exchange inclusion ranging from short‐range to mid‐range (0.5–3 Å) to ground state properties achieved high performances of LCgau‐B97 simultaneously on both ground state and excited state properties, which is better than other tested semiempirical density functional theory (DFT) functionals, such as ωB97, ωB97X, BMK, and M0x‐family. We also found that while a small μ value (~0.2) in LC‐DFT is appropriate to the local excitation and intramolecular charge‐transfer excitation energies, a larger μ value (0.42) is desirable in the Rydberg excitation‐energy calculations. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号