首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
6‐Butyl‐3‐((dimethylamino)methylene)pyrano[3,2‐c]quinolinone and 6‐butyl pyrano[3,2‐c]quinolone‐3‐carbonitrile were efficiently synthesized in good yield. These two new precursors were used to obtain some novel heteroannulated pyrano[3,2‐c]quinolone derivatives from heterocyclization reactions with various binucleophiles. These heteroannulation reactions afforded novel heterocyclic systems fused to the pyranoquinolinone at face c, such as pyrazole, pyrimidine, pyridine, and pyrazolopyranone.  相似文献   

2.
2‐Methyl‐3H‐indoles 1 cyclize with two equivalents of ethyl malonate 2 to form 4‐hydroxy‐11H‐benzo[b]pyrano[3,2‐f]indolizin‐2,5‐diones 3, whereas 2‐mefhyl‐2,3‐dihydro‐1H‐indoles 9 give under similar conditions regioisomer 8‐hydroxy‐5‐methyl‐4,5‐dihydro‐pyrrolo[3,2,1‐ij]pyrano[3,2‐c]quinolin‐7,10‐diones 10 . The pyrone rings of 3 and 9 can be cleaved either by alkaline hydrolysis to give 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 or 5‐acetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo‐[3,2,1‐ij]quinolin‐4‐ones 11 , respectively. Chlorination of 3 and 9 with sulfurylchloride gives under subsequent ring opening 7‐dichloroacetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 5 or 5‐dichloracetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 12 . The dichloroacetyl group of 5 can be reduced with zinc to 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 7. Treatment of the acetyl compounds 4, 7 and 11 with 90% sulfuric acid cleaves the acetyl group and yields 8‐hydroxy‐10H‐pyrido[1,2‐a]‐indol‐6‐ones 6 and 8 , and 6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 13 . Reaction of dichloroacetyl compounds 12 with sodium azide yields 6‐hydroxy‐2‐methyl‐5‐(1H‐tetrazol‐5‐ylcarbonyl)‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 14 via intermediate geminal diazides.  相似文献   

3.
Various derivatives of title ring system were synthesized by Claisen condensation of 4 acetyl‐5 ‐hydroxy‐pyrazoles with appropriate esters, followed by acid‐catalyzed ring closure.  相似文献   

4.
A simple and efficient approach to synthesize a novel pyrrolocoumarin 9‐hydroxy‐8H‐pyrano[3,2‐f]indol‐2‐one ( 7 ) has been described. Starting from vanillin, the key intermediate 7‐methoxy‐1H‐indol‐6‐yl propiolate ( 6 ) was synthesized in six steps. Then, the target compound was obtained by forming pyrone‐ring and demethylation simultaneously in one step. A plausible mechanism invoking PtCl4 catalyzed one‐step reaction of cyclization and demethylation was also presented.  相似文献   

5.
An efficient four‐component approach for the synthesis poly‐substituted pyrano[3,2‐c]pyridones and spiro[indoline‐3,4′‐pyrano[3,2‐c]pyridine]‐2,5′(6′H)‐diones in water has been established. During the reaction, the products were readily achieved through one‐pot two‐step reaction using solid acid as catalyst. The advantages of atom and step economy, the recyclability of heterogeneous solid acid catalyst, easy workup procedure, and the wide scope of substrates make the reaction a powerful tool for assembling pyrano[3,2‐c]pyridone skeletons of chemical and medical interest.  相似文献   

6.
1,2‐Dihydro‐5H‐[1]benzopyrano[4,3‐b]pyridine‐2,5‐diones 4a‐j were synthesized from 4‐alkylamino‐coumarin‐3‐carbaldehydes 1 and 5(4H)‐oxazolinones (azalactones) derived from N‐acetylglycine ( 2a ) and hippuric acid ( 2b ). The intermediates 3 ( 3j isolated only) underwent spontaneous recyclization via opening of the azalactone and successive formation of the fused 2‐pyridones 4 . Attempts to synthesize the selected 2H‐chromeno[3,4‐f]‐1,7‐naphthyridine 6 by Vilsmeier reaction of 4e failed. Instead, N‐deacetylation took place, followed by formylation of the amino group to the formamidine 7a . In addition, pyranopyridine 9a was obtained by condensation of the 3‐formyl‐2‐pyridone 8 with the azalactone derived from 2a and acetic anhydride.  相似文献   

7.
Three‐component reaction of 4‐hydroxy‐2H‐benzo[h]chromen‐2‐one, aromatic aldehydes, and malononitrile in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) in ethanol at room temperature affords good yields of novel dihyrobenzo[h]pyrano[3,2‐c]chromene derivatives. The synthesized compounds examined by MTT assays for cytotoxic activity in two human cancer cell lines (MOLT‐4, HL‐60). Most of the evaluated compounds showed low inhibitory activity against tumor cell line at micromolar concentrations.  相似文献   

8.
A new, one‐pot, simple thermally efficient and solvent‐free method for the preparation of 7‐alkyl‐6H,7H‐naphtho[1′,2′:5,6]pyrano[3,2‐c]chromen‐6‐ones by condensation of β‐naphthol, aromatic aldehydes, and 4‐hydroxycoumarin using Zr(HSO4)4 as a safe and efficient catalyst is described. This method has the advantages of high yields, a cleaner reaction, simple methodology, short reaction times, easy workup, and greener conditions. J. Heterocyclic Chem., (2011).  相似文献   

9.
Furo[3,2‐c]pyran‐4‐ones, which possess a natural‐product skeleton, are synthesized via a simple, one‐pot, three‐component reaction of furan‐2,3‐diones with dialkyl acetylenedicarboxylates and Ph3P.  相似文献   

10.
A simple synthesis of 2‐hydrazinylidene‐3‐hydroxy‐4H‐furo[3,2‐c]pyran‐4‐ones is described. A mixture of (isocyanoimino)(triphenyl)phosphorane, an aromatic aldehyde, and dehydroacetic acid (=3‐acetyl‐2‐hydroxy‐6‐methyl‐4H‐pyran‐4‐one) undergo a 1 : 1 : 1 addition reaction under mild conditions to afford the title compounds in excellent yields.  相似文献   

11.
A new synthesis of 2‐phenylpyrano[3,2‐b]phenothiazin‐4(6H)‐one derivatives was reported. First 2,10‐diacetyl‐3‐hydroxyphenothiazine ( 2 ) was converted into their benzoyloxy esters ( 3a – 3j ) using different aromatic carboxylic acids in the presence of phosphorous oxychloride in pyridine. Benzoyloxy esters were converted into their 1,3‐diones ( 4a – 4j ) by using dry KOH in pyridine via Baker‐Venkataraman transformation reaction. The 1,3‐diones thus obtained were cyclised to pyranophenothiazines ( 5a – 5j ) by refluxing in an acetic acid/HCl mixture.  相似文献   

12.
The novel 6‐ethyl‐4‐hydroxy‐2,5‐dioxo‐5,6‐dihydro‐2H‐pyrano[3,2‐c]quinoline‐3‐carboxaldehyde ( 2 ) was efficiently synthesized from Vilsmeier–Haack formylation of 3‐(1‐ethy1‐4‐hydroxy‐2‐oxo‐(1H)‐quinolin‐3‐yl)‐3‐oxopropanoic acid ( 1 ). The aldehyde 2 was allowed to react with some nitrogen nucleophiles producing a variety of hydrazones 3 – 7 . Reaction of aldehyde 2 with hydrazine hydrate and hydroxylamine hydrochloride afforded pyrazole and isoxazole annulated pyrano[3,2‐c]quinoline‐2,5(6H)‐dione, respectively. The reactivity of aldehyde 2 was examined toward some active methylene nitrile, namely, malononitrile, ethyl cyanoacetate, and cyanoacetamide leading to 2‐iminopyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines 10 – 12 , respectively. Also, some novel pyrazolo[4″,3″:5′,6′]pyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines ( 13 , 14 ) and thiazolo[5″,4″:5′,6′]pyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines ( 15 , 16 ) were synthesized. Structures of the new synthesized products were deduced on the basis of their analytical and spectral data.  相似文献   

13.
An efficient synthesis of 3‐bromoacetyl‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one by bromination of dehydroacetic acid in glacial acetic acid is described. Novel 4‐hydroxy‐6‐methyl‐3‐(2‐substituted‐thiazol‐4‐yl)‐2H‐pyran‐2‐ones have been prepared from the reaction of 3‐bromoacetyl‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one with thioamides, thiourea, and diphenylthiocarbazone. The condensation reaction of 6‐methyl‐4H‐furo[3,2c]pyran‐3,4‐dione, obtained from the reaction of 3‐bromoacetyl‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one with aliphatic amines, with benzaldehydes and acetophenones led to novel 2‐arylidene‐6‐methyl‐2H‐furo[3,2‐c]pyran‐3,4‐diones and 6‐(2‐arylprop‐1‐enyl)‐2H‐furo[3,2‐c]pyran‐3,4‐diones. The structure of all compounds was established by elemental analysis, IR, NMR, and mass spectra. J. Heterocyclic Chem., 2011.  相似文献   

14.
5‐Amino‐thieno[3,2‐c]pyrazole derivative 2 was prepared by Gewald reaction in a one‐pot procedure. The amino group of compound 2 like primary aromatic amine formed the diazonium salt when treated with NaNO2/HCl, followed by coupling with different nucleophiles to yield the azo coupling products 3a – d . The reactivity of 5‐amino‐thienopyrazole 2 has been investigated towards different electrophilic reagents such as aromatic aldehydes, alkyl halide, acid chloride, acid anhydride, phenyl isothiocyanate, carbon disulfide, ethyl glycinate, and thioacetamide, which afforded the reaction products 4 – 14 , respectively.  相似文献   

15.
16.
A useful synthesis of 3‐methylthio‐6‐methyl‐pyrano[4,3‐c]pyrazol‐4(2H)‐ones via 3‐(bis‐methylthio)methylene‐5,6‐dihydro‐6‐alkyl(aryl)‐2H‐pyran‐2,4‐dione with hydrazine as well as methyl and phenyl hydrazines is described and the mechanism of the formation is discussed. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:342–344, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10158  相似文献   

17.
A new and efficient route for the synthesis of derivatives of the poorly investigated pyrano[2,3‐d][1,3]thiazine heterocyclic system is disclosed. These compounds were prepared via annulation of 2‐aryl‐4‐hydroxy‐6H‐1,3‐thiazine‐6‐ones with aliphatic and aromatic aldehydes in the presence of pyridine. The method is general and versatile, and the interaction is independent on the nature of the aldehyde, the only exceptions being formaldehyde and salicylaldehydes.  相似文献   

18.
19.
In this research, we have developed an efficient three‐component reaction for the synthesis of pyrano[3,2‐c]pyridine derivatives from the reaction of aromatic aldehydes, tert‐butyl 2,4‐dioxopiperidine‐1‐carboxylate, and N‐methyl‐1‐(methylthio)‐2‐nitroethylen‐1‐amine in [BMIM]BF4 medium. The advantages of this method were readily available starting materials, simple reaction conditions, and satisfactory yields.  相似文献   

20.
Several new benzo[ij]pyrano[2,3‐b]quinolizine‐8‐ones 5 and 4H‐pyrano[2,3‐b]pyridine 8 derivatives were synthesized from 4‐hydroxyquinolines 1 . Reacting 3‐acetyl‐4‐hydroxy‐1‐phenyl‐1H‐quinoline‐2‐one with dimethylformamide dimethylacetal afforded 3‐(3‐Dimethylarnino‐acryloyl)‐4‐hydroxy‐1‐phenyl‐1H‐quinolin‐2‐one 9 . This reacted with hippuric acid and diethyl 3‐oxoglutarate to give 2H‐pyran‐2‐one 13 and pyranopyridoquinoline 17 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号