首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A fluorescent staining technique, using selective chelation with fluorophore and metal ion to the phosphate groups of phosphoproteins in SDS‐PAGE is described. As a fluorescent dye and a metal ion, Fura 2 pentapotassium salt and Al3+ were employed, respectively. The staining method, Fura 2 stain, has sensitivities of 16–32 ng of α‐casein and β‐casein, 62 ng of ovalbumin, phosvitin, and κ‐casein using an ultraviolet transilluminator. Furthermore, Fura 2 stain is able to carry out continuative double detection of total proteins and phosphoproteins on the same gel within 3.5 h. Consequently, selective phosphoprotein and total protein detections could be obtained without other poststaining. Considering the low cost, simplicity, and speed, Fura 2 staining may provide great practicalities in routine phosphoproteomics research.  相似文献   

2.
In order to obtain an easy and rapid protocol to visualize phosphoproteins in SDS‐PAGE, a fluorescent detection method named 8‐Quinolinol (8‐Q) stain is described. 8‐Q can form ternary complexes in the gel matrix contributed by the affinity of aluminum ion (Al3+) to the phosphate groups on the proteins and the metal chelating property of 8‐Quinolinol, exhibiting strong fluorescence in ultraviolet light. It can visualize as little as 4~8 ng of α‐casein and β‐casein, 16~32 ng of ovalbumin and κ‐casein which is more sensitive than Stains‐All but less sensitive than Pro‐Q Diamond. The protocol of 8‐Q requires only 70 min in 0.75 mm mini‐size or 1.0 mm large‐size gels with five changes of solutions without destaining step; Pro‐Q takes at least 250 min with 11 changes of solutions. In addition, the new method was confirmed by the study of dephosphorylation and LC‐MS/MS, respectively. The approach to visualize phosphoprotein utilizing 8‐Q could be an alternative to simplify the analytical operations for phosphoproteomics research.  相似文献   

3.
A novel fluorescence detection system using a chemosensor for phosphoprotein in gel electrophoretic analysis has been developed. The system employed the alizarin red S‐aluminum (III)‐appended complex as a fluorescent staining dye to perform the convenient and selective detection of phosphorylated proteins and total proteins in SDS‐PAGE, respectively. Therefore, a full and selective map of proteins can be achieved in the same process without resorting to other compatible detection methods. As low as 62.5 ng of α‐ (seven or eight phosphates) and β‐casein (five phosphates), 125 ng of ovalbumin (two phosphates), and κ‐casein (one phosphate) can be detected in approximately 135 min, with the linear responses of rigorous quantitation of changes over a 125–4000 ng range. As a result, alizarin red S‐aluminum (III) stain may provide a new choice for selective, economic, and convenient visualization of phosphoproteins.  相似文献   

4.
A fluorescent quenching detection method for phosphoproteins in SDS‐PAGE by using calconcarboxylic acid (CCA) was described. In this method, the fluorescence intensity of CCA was greatly increased with the presence of Al3+ in the gel background, while in zones where phosphoproteins are located this intensity was absent because of fluorescence quenching phenomenon through the formation of CCA‐Al3+‐phosphoprotein appended complex. Approximately 4–8 ng of phosphoproteins can be selectively detected within 1 h (1D SDS‐PAGE), which is similar to that of the most commonly used Pro‐Q Diamond stain. The specificity of this novel technique for phosphoproteins was confirmed by dephosphorylation, Western blot, and LC‐MS/MS analysis, respectively. Furthermore, to better understand the newly developed method, the detection mechanism of CCA stain was explored by fluorescent spectrometry. According to the results, it is believed that CCA stain may provide a new choice for selective, economical, MS compatible, and convenient visualization of gel‐separated phosphoproteins.  相似文献   

5.
An improved Stains‐All (ISA) staining method for phosphoproteins in SDS‐PAGE was described. Down to 0.5–1 ng phosphoproteins (α‐casein, β‐casein, or phosvitin) can be successfully selectively detected by ISA stain, which is approximately 120‐fold higher than that of original Stains‐All stain, but is similar to that of commonly used Pro‐Q Diamond stain. Furthermore, unlike the original Stains‐All protocol that was time consuming and light unstable, ISA stain could be completed within 60 min without resorting to protect the gels from light during the whole staining procedure. According to the results, it is concluded that ISA stain is a rapid, sensitive, specific, and economic staining method for a broad application to the research of phosphoproteins.  相似文献   

6.
Currently, great challenges to top‐down phosphoproteomics lie in the selective enrichment of intact phosphoproteins from complex biological samples. Herein, we developed a facile approach for synthesis of Ti4+‐immobilized affinity silica nanoparticles and applied them to the selective separation and enrichment of intact phosphoproteins based upon the principle of metal(IV) phosphate/phosphonate chemistry. The as‐prepared affinity materials exhibited high selectivity and adsorption capacities for model phosphoproteins (328.9 mg/g for β‐casein, 280.5 mg/g for ovalbumin, and 225.8 mg/g for α‐casein), compared with nonphosphoproteins (79.28 mg/g for horseradish peroxidase, 72.70 mg/g for BSA, and 27.28 mg/g for lysozyme). In addition, the resuability of the affinity silica nanoparticles was evaluated, and the results demonstrated a less than 10% loss of adsorption capacity after six adsorption–regeneration cycles. The practicability of the affinity materials was demonstrated by separating phosphoproteins from protein mixtures and drinking milk samples, and the satisfactory results indicated its potential in phosphoproteomics analysis.  相似文献   

7.
In accordance with prior calculations, the new polymorph β‐LiCl (wurtzite structure type) has been synthesised, by the low‐temperature atomic‐beam‐deposition (LT–ABD) technique, in a mixture with α‐LiCl (rock salt structure type) by depositing LiCl vapour (2 to 5.3 × 10–4 mbar) onto a cooled substrate (–30 to –60 °C). The maximum β‐LiCl fraction of 53 % was obtained using a sapphire (0001) substrate at –50 °C and 3.7 × 10–4 mbar LiCl vapour pressure. The proportion of the new polymorph contained in the bulk sample decreases as temperature or vapour pressure deviate from these values, until finally the rock salt type LiCl is found exclusively. When the samples are warmed up to room temperature, β‐LiCl irreversibly transforms to α‐LiCl. The X‐ray diffraction pattern of the two phase LiCl sample measured at –50 °C has been indexed and refined based on a hexagonal unit cell for β‐LiCl with the lattice constants a = 3.852(1) Å and c = 6.118(1) Å and a cubic unit cell for α‐LiCl with the lattice constant a = 5.0630(8) Å. By Rietveld refinement the wurtzite type ofstructure (P63mc, No. 186) was suggested for the new hexagonal modification of LiCl with the Li–Cl distances (2.32 and 2.34 Å) being 8 % smaller than those of α‐LiCl. Moreover, the cell volume decreases as much as 16 % during the transition from β‐LiCl to α‐LiCl. Both the shifts in bond lengths and volume correspond well with the situation encountered for LiBr and LiI. Besides the variation of LiCl vapour pressure and substrate temperature, also different substrate materials were employed for testing their influence on formation of the β‐LiCl polymorph.  相似文献   

8.
Phosphorylated proteins play essential roles in many cellular processes, and identification and characterization of the relevant phosphoproteins can help to understand underlying mechanisms. Herein, we report a collision‐induced dissociation top‐down approach for characterizing phosphoproteins on a quadrupole time‐of‐flight mass spectrometer. β‐casein, a protein with two major isoforms and five phosphorylatable serine residues, was used as a model. Peaks corresponding to intact β‐casein ions with charged states up to 36+ were detected. Tandem mass spectrometry was performed on β‐casein ions of different charge states (12+, and 15+ to 28+) in order to determine the effects of charge state on dissociation of this protein. Most of the abundant fragments corresponded to y, b ions, and internal fragments caused by cleavage of the N‐terminal amide bond adjacent to proline residues (Xxx‐Pro). The abundance of internal fragments increased with the charge state of the protein precursor ion; these internal fragments predominantly arose from one or two Xxx‐Pro cleavage events and were difficult to accurately assign. The presence of abundant sodium adducts of β‐casein further complicated the spectra. Our results suggest that when interpreting top‐down mass spectra of phosphoproteins and other proteins, researchers should consider the potential formation of internal fragments and sodium adducts for reliable characterization.  相似文献   

9.
A method using high‐performance liquid chromatography coupled with tandem mass spectrometry was developed for the simultaneous determination of organic acids in microalgae. o‐Benzylhydroxylamine was used to derivatize the analytes, and stable isotope‐labeled compounds were used as internal standards for precise quantification. The proposed method was evaluated in terms of linearity, recovery, matrix effect, sensitivity, and precision. Linear calibration curves with correlation coefficients >0.99 were obtained over the concentration range of 0.4–40 ng/mL for glycolic acid, 0.1–10 ng/mL for malic acid and oxaloacetic acid, 0.02–2 ng/mL for succinic acid and glyoxylic acid, 4–400 ng/mL for fumaric acid, 20–2000 ng/mL for isocitric acid, 2–200 ng mL−1 for citric acid, 100–10000 ng mL−1 for cis‐aconitic acid, and 1–100 ng mL−1 for α‐ketoglutaric acid. Analyte recoveries were between 80.2 and 115.1%, and the matrix effect was minimal. Low limits of detection (0.003–1 ng/mL) and limits of quantification (0.01–5 ng/mL) were obtained except cis‐aconitic acid. Variations in reproducibility for standard solution at three different concentrations levels were <9%. This is the first report of the simultaneous analysis of ten organic acids in microalgae, which promotes better understanding of their growth state and provides reference value for high‐yield microalgae cultures.  相似文献   

10.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

11.
The biomimic reactions of N‐phosphoryl amino acids, which involved intramolecular penta‐coordinate phosphoric‐carboxylic mixed anhydrides, are very important in the study of many biochemical processes. The reactivity difference between the α‐COOH group and β‐COOH in phosphoryl amino acids was studied by experiments and theoretical calculations. It was found that the α‐COOH group, and not β‐COOH, was involved in the ester exchange on phosphorus in experiment. From MNDO calculations, the energy of the penta‐coordinate phosphoric intermediate containing five‐member ring from α‐COOH was 35 kJ/mol lower than that of the six‐member one from β‐COOH. This result was in agreement with that predicted by HF/6‐31G** and B3LYP/6‐31G** calculations. Theoretical three‐dimensional potential energy surface for the intermediates predicted that the transition states 4 and 5 involving α‐COOH or β‐COOH group had energy barriers of ΔE=175.8 kJ?mol?1 and 210.4 kJ?mol?1, respectively. So the α‐COOH could be differentiated from β‐COOH intramolecularly in aspartic acids by N‐phosphorylation. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 41–51, 2001  相似文献   

12.
Enantiomers of Tröger's base were separated by capillary electrophoresis using 2IO‐, 3IO‐, and 6IO‐carboxymethyl‐α‐, β‐, and γ‐cyclodextrin and native α‐, β‐, and γ‐cyclodextrin as chiral additives at 0–12 mmol/L for β‐cyclodextrin and its derivatives and 0–50 mmol/L for α‐ and γ‐cyclodextrins and their derivatives in a background electrolyte composed of sodium phosphate buffer at 20 mmol/L concentration and pH 2.5. Apparent stability constants of all cyclodextrin–Tröger's base complexes were calculated based on capillary electrophoresis data. The obtained results showed that the position of the carboxymethyl group as well as the cavity size of the individual cyclodextrin significantly influences the apparent stability constants of cyclodextrin–Tröger's base complexes.  相似文献   

13.
While the gold(I)‐catalyzed glycosylation reaction with 4,6‐O‐benzylidene tethered mannosyl ortho‐alkynylbenzoates as donors falls squarely into the category of the Crich‐type β‐selective mannosylation when Ph3PAuOTf is used as the catalyst, in that the mannosyl α‐triflates are invoked, replacement of the ?OTf in the gold(I) complex with less nucleophilic counter anions (i.e., ?NTf2, ?SbF6, ?BF4, and ?BAr4F) leads to complete loss of β‐selectivity with the mannosyl ortho‐alkynylbenzoate β‐donors. Nevertheless, with the α‐donors, the mannosylation reactions under the catalysis of Ph3PAuBAr4F (BAr4F=tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate) are especially highly β‐selective and accommodate a broad scope of substrates; these include glycosylation with mannosyl donors installed with a bulky TBS group at O3, donors bearing 4,6‐di‐O‐benzoyl groups, and acceptors known as sterically unmatched or hindered. For the ortho‐alkynylbenzoate β‐donors, an anomerization and glycosylation sequence can also ensure the highly β‐selective mannosylation. The 1‐α‐mannosyloxy‐isochromenylium‐4‐gold(I) complex ( Cα ), readily generated upon activation of the α‐mannosyl ortho‐alkynylbenzoate ( 1 α ) with Ph3PAuBAr4F at ?35 °C, was well characterized by NMR spectroscopy; the occurrence of this species accounts for the high β‐selectivity in the present mannosylation.  相似文献   

14.
The non‐covalent complexes of α‐ and β‐cyclodextrins (α‐, β‐CDs) with two aryl alkanol piperazine derivatives (Pipe I and Pipe II) have been studied by electrospray ionization mass spectrometry (ESI‐MS) and fluorescence spectroscopy. The ESI‐MS experimental results demonstrated that Pipe I can conjugate to β‐CD and form 1:1 or 1:2 stoichiometric non‐covalent complexes, and Pipe II can only form 1:1 complexes with α‐ or β‐CD. Fluorescence spectra indicated that the fluorescence intensities of Pipe I and Pipe II can be enhanced by increasing the content of β‐CD. The mass spectrometric titration experiments showed that the dissociation constants Kd1 were 5.77 and 9.52 × 10?4 mol L?1 for the complexes of α‐CD with Pipe I and Pipe II, respectively, revealing that the binding of α‐CD‐Pipe I was stronger than α‐CD‐Pipe II. The Kd1 and Kd2 values were 9.81 × 10?4 mol L?1 and 1.11 × 10?7 (mol L?1)2 for 1:1 and 1:2 complexes of Pipe I with β‐CD, respectively. The Kd values obtained from fluorescence spectroscopy were in agreement with those from ESI‐MS titration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A straightforward method for the assembly of fluorescent polyrotaxanes is described here. The consecutive threading of N‐(6I‐desoxy‐β‐cyclodextrin‐6I‐yl)‐N′‐(5‐fluoresceinyl)‐thiourea, β‐CD‐F , and α‐CD onto poly(N,N‐dimethyliminium‐hexamethylen‐N′,N′‐dimethyliminium‐decamethylene chloride), I‐6,10 , leads to a fluorescent polyrotaxane. Free β‐CD‐F could be distinguished from threaded β ‐ CD‐F by gel electrophoresis. Since the dissociation of threaded α‐CD rings is sterically hindered, the obtained polyrotaxanes are kinetically stable at 25 °C, and they did not require further stabilization by the attachment of stopper groups at the chain ends. Single polyrotaxane entities could be visualized with both fluorescence microscopy and atomic force microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6223–6230, 2009  相似文献   

16.
A simple and sensitive procedure based on headspace solid‐phase microextraction and gas chromatography with mass spectrometry was developed for the determination of five terpenes (α‐pinene, limonene, linalool, α‐terpineol, and geraniol) in the leaves of Nicotiana langsdorffii. The microextraction conditions (extraction temperature, equilibration time, and extraction time) were optimized by means of a Doehlert design. The experimental design showed that, for α‐pinene and limonene, a low temperature and a long extraction time were needed for optimal extraction, while linalool, α‐terpineol, and geraniol required a high temperature and a long extraction time. The chosen compromise conditions were temperature 60°C, equilibration time 15 min and extraction time 50 min. The main analytical figures of the optimized method were evaluated; LODs ranged from 0.07 ng/g (α‐pinene) to 8.0 ng/g (geraniol), while intraday and interday repeatability were in the range 10–17% and 9–13%, respectively. Finally, the procedure was applied to in vitro wild‐type and transgenic specimens of N. langsdorffii subjected to abiotic stresses (chemical and heat stress). With the exception of geraniol (75–374 ng/g), low concentration levels of terpenes were measured (ng/g level or lower); some interesting variations in terpene concentration induced by abiotic stress were observed.  相似文献   

17.
The enantioselective trifluoromethylthiolation of β‐ketoesters using chiral copper–boxmi complexes as catalysts is reported. A number of α‐SCF3‐substituted β‐ketoesters have been obtained with up to >99 % enantiomeric excess (ee), and the trifluoromethylthiolated products were then transformed diastereoselectively to α‐SCF3‐β‐hydroxyesters with two adjacent quaternary stereocenters.  相似文献   

18.
We isolated α‐chitin, β‐chitin, and γ‐chitin from natural resources by a chemical method to investigate the crystalline structure of chitin. Its characteristics were identified with Fourier transform infrared (FTIR) and solid‐state cross‐polarization/magic‐angle‐spinning (CP–MAS) 13C NMR spectrophotometers. The average molecular weights of α‐chitin, β‐chitin, and γ‐chitin, calculated with the relative viscosity, were about 701, 612, and 524 kDa, respectively. In the FTIR spectra, α‐chitin, β‐chitin, and γ‐chitin showed a doublet, a singlet, and a semidoublet at the amide I band, respectively. The solid‐state CP–MAS 13C NMR spectra revealed that α‐chitin was sharply resolved around 73 and 75 ppm and that β‐chitin had a singlet around 74 ppm. For γ‐chitin, two signals appeared around 73 and 75 ppm. From the X‐ray diffraction results, α‐chitin was observed to have four crystalline reflections at 9.6, 19.6, 21.1, and 23.7 by the crystalline structure. Also, β‐chitin was observed to have two crystalline reflections at 9.1 and 20.3 by the crystalline structure. γ‐Chitin, having an antiparallel and parallel structure, was similar in its X‐ray diffraction patterns to α‐chitin. The exothermic peaks of α‐chitin, β‐chitin, and γ‐chitin appeared at 330, 230, and 310, respectively. The thermal decomposition activation energies of α‐chitin, β‐chitin, and γ‐chitin, calculated by thermogravimetric analysis, were 60.56, 58.16, and 59.26 kJ mol?1, respectively. With the Arrhenius law, ln β was plotted against the reciprocal of the maximum decomposition temperature as a straight line; there was a large slope for large activation energies and a small slope for small activation energies. α‐Chitin with high activation energies was very temperature‐sensitive; β‐Chitin with low activation energies was relatively temperature‐insensitive. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3423–3432, 2004  相似文献   

19.
A rapid and simple LC with MS/MS method for the simultaneous determination of metoprolol and its two CYP2D6‐derived metabolites, α‐hydroxy‐ and O‐desmethylmetoprolol, in human plasma was established. Metoprolol (MET), its two metabolites, and the internal standard chlorpropamide were extracted from plasma (50 μL) using ethyl acetate. Chromatographic separation was performed on a Luna CN column with an isocratic mobile phase consisting of distilled water and methanol containing 0.1% formic acid (60:40, v/v) at a flow rate of 0.3 mL/min. The total run time was 3.0 min per sample. Mass spectrometric detection was conducted by ESI in positive ion selected‐reaction monitoring mode. The linear ranges of concentration for MET, α‐hydroxymetoprolol, and O‐desmethylmetoprolol were 2–1000, 2–500, and 2–500 ng/mL, respectively, with a lower limit of quantification of 2 ng/mL for all analytes. The coefficient of variation for the assay's precision was ≤ 13.2%, and the accuracy was 89.1–110%. All analytes were stable under various storage and handling conditions and no relevant cross‐talk and matrix effect were observed. Finally, this method was successfully applied to assess the influence of CYP2D6 genotypes on the pharmacokinetics of MET after oral administration of 100 mg to healthy Korean volunteers.  相似文献   

20.
A novel design of hollow‐fiber liquid‐phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol–gel technique, was developed for the pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid‐ and liquid‐phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2 = 0.99) in the range of 0.01–500 ng/mL and the limits of detection were in the range of 0.007–1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85–92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号