首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2017,29(4):1188-1196
In this work, one novel electrochemical sensor was prepared by alternative deposition of phosphomolybdic acid (PMoA) and poly(ethyleneimine) (PEI) on an indium tin oxide glass substrate through layer‐by‐layer assembly. The performance of as‐prepared electrode was evaluated with both of oxidizing compounds of iodate and H2O2 and reducing compounds of dopamine and ascorbic acid as models. The results showed that corresponding current response of redox peak increased linearly with the concentration of above compounds increasing in certain ranges, respectively. Limits of detection to them were in the range of 1.0×10−4 ‐ 4.3×10−4 mg mL−1 with cyclic voltammetry (CV) in 0.1 mol L−1 NaAc‐HAc buffer (pH 5.0). The electrode showed high stability and remained 95 % of its initial activity even after 100 cycles of CV scan. When applied in real samples of table salts, juice and human serum, high recoveries of 96.84 to 100.33 % were achieved with relative standard deviations of 1.11‐3.96 % (n=3) at three spiked levels. Moreover, it was also successfully applied for the simultaneous determination of dopamine and ascorbic acid in human serum with differential pulse voltammetry. The results indicated that PMoA/PEI multilayer modified electrode can be used as a universal electrochemical sensor for sensitive detection of redox compounds.  相似文献   

2.
The mixed‐valent nickel hexacyanoferrate (NiHCF) and poly(3,4‐ethylenedioxythiophene) (PEDOT) hybrid film (NiHCF‐PEDOT) was prepared on a glassy carbon electrode (GCE) by multiple scan cyclic voltammetry. The films were characterized using atomic force microscopy, field emission scanning electron microscopy, energy dispersive spectroscopy, X‐ray diffraction, and electrochemical impedance spectroscopy (AC impedance). The advantages of these films were demonstrated for the detection of ascorbic acid (AA) using cyclic voltammetry and amperometric techniques. The electrocatalytic oxidation of AA at different electrode surfaces, such as the bare GCE, the NiHCF/GCE, and the NiHCF‐PEDOT/GCE modified electrodes, was determined in phosphate buffer solution (pH 7). The AA electrochemical sensor exhibited a linear response from 5×10−6 to 1.5×10−4 M (R2=0.9973) and from 1.55×10−4 to 3×10−4 M (R2=0.9983), detection limit=1×10−6 M, with a fast response time (3 s) for AA determination. In addition, the NiHCF‐PEDOT/GCE was advantageous in terms of its simple preparation, specificity, stability and reproducibility.  相似文献   

3.
In this study, the electrochemical reduction of nitrite was investigated on poly(4‐aminoacetanilide) (PPAA) forming by cyclic voltammetry at the surface of carbon paste electrode. The electrochemical properties of the modified electrode have been studied by cyclic voltammetry and double potential step chronoamperometry. Results showed that in the optimum condition (pH = 0.00) the reduction of nitrite occurred at a potential about 667 mV more positive than that unmodified carbon paste electrode. This amount of electrocatalytic ability is high compared with other electrocatalysts. Using a chronoamperometric method, the catalytic rate constant (k) was calculated 8.4 × 104 cm3 mol‐1 s‐1. Also, the electrocatalytic reduction peak currents was found to be linear with the nitrite concentration in the ranges of 5 × 10‐4 M to 2.5 × 10‐2 M and 2 × 10‐5 M to 7 × 10‐3 M with detection limits (2σ) were determined as 4.5 × 10‐4 M and 1 × 10‐5 M by cyclic voltammetry (CV) and hydrodynamic amperometry methods respectively. Recovery experiments exhibit the satisfactory results.  相似文献   

4.
A carbon paste electrode spiked with 1‐[4‐ferrocenyl ethynyl) phenyl]‐1‐ethanone (4FEPE) was constructed by incorporation of 4FEPE in graphite powder‐paraffin oil matrix. It has been shown by direct current cyclic voltammetry and double step chronoamperometry that this electrode can catalyze the oxidation of tryptophan (Trp) in aqueous buffered solution. It has been found that under optimum condition (pH 7.00), the oxidation of Trp at the surface of such an electrode occurs at a potential about 200 mV less positive than at an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and rate constant for the chemical reaction between Trp and redox sites in 4FEPE modified carbon paste electrode (4FEPEMCPE) were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of Trp showed a linear dependent on the Trp concentrations and linear calibration curves were obtained in the ranges of 6.00×10?6 M–3.35×10?3 M and 8.50×10?7 M–6.34×10?5 M of Trp concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 1.80×10?6 M and 5.60×10?7 M by CV and DPV methods. This method was also examined as a selective, simple and precise new method for voltammetric determination of tryptophan in real sample.  相似文献   

5.
The presence of profenofos (PFF) in food has been strictly limited by legislation due to its genotoxic and toxic effects on health. It is therefore very important to establish simple and rapid analytical methods to detect traces of this insecticide. A reusable molecularly imprinted polypyrrole MIP(O-PPy) on a glassy carbon electrode (GCE) has been developed to measure PFF. The PPy was polymerized by cyclic voltammetry (CV) in the presence of template molecules (PFF) in an acidic solution on a GCE. The various experimental parameters such as film thickness, analyte/monomer ratio, and removal/rebinding requirements were examined and optimized. The signal of the redox probe (ferrocyanide/ferrocyanide) was used for the electrochemical detections. All steps of the sensor manufacturing, removal/rebinding of template molecules, and response to different PFF concentrations were tested by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The MIP sensor was able to detect PFF in the linear ranges of 1.0×10−9 to 1.0×10−6 M and 1.0×10−9 to 5.0×10−6 M, with detection limits, a signal-to-noise ratio (S/N) of three was used to estimate LOD, of about 1 nM using DPV and EIS, respectively. The MIP (PPy) GCE provided excellent PFF recognition performance and was successfully used to quantify PFF in sweet pepper samples, yielding recoveries not greater than 108 %.  相似文献   

6.
《Electroanalysis》2006,18(17):1722-1726
The electrochemical properties of L ‐cysteic acid studied at the surface of p‐bromanil (tetrabromo‐p‐benzoquinone) modified carbon paste electrode (BMCPE) in aqueous media by cyclic voltammetry (CV) and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteic acid at the surface of BMCPE occurs at a half‐wave potential of p‐bromanil redox system (e.g., 100 mV vs. Ag|AgCl|KClsat), whereas, L ‐cysteic acid was electroinactive in the testing potential ranges at the surface of bare carbon paste electrode. The apparent diffusion coefficient of spiked p‐bromanil in paraffin oil was also determined by using the Cottrell equation. The electrocatalytic oxidation peak current of L ‐cysteic acid exhibits a linear dependency to its concentration in the ranges of 8.00×10?6 M–6.00×10?3 M and 5.2×10?7 M–1.0×10?5 M using CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (2σ) were determined as 5.00×10?6 M and 4.00×10?7 M by CV and DPV methods. This method was used as a new, selective, rapid, simple, precise and suitable voltammetric method for determination of L ‐cysteic acid in serum of patient's blood with migraine disease.  相似文献   

7.
A glassy carbon electrode was modified with electropolymerized film of diphenylamine sulfonic acid (DPASA). Electropolymerization was performed by cyclic voltammetry in 0.1 M KCl solution. The modified electrode showed an excellent electrocatalytic effect towards oxidation of dopamine (DA) and ascorbic acid (AA). Electrostatic interaction between the negatively charged poly(DPASA) film and either cationic DA species or anionic AA species favorably contributed to the redox response of DA and AA. Anodic peaks of DA and AA in their mixture were well separated by ca 168 and −11.8 mV. The proposed modified electrode was utilized for selective determination of dopamine in the concentration range of 5.0 × 10t7–2.0 × 10−5 M in the presence of high concentration of ascorbic acid. Detection limit was 6.5 × 10−9 M.  相似文献   

8.
The preconcentration and voltammetric behavior of BiIII on a sodium humate modified carbon paste electrode was studied by means of cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV). The proposed measurement involves an initial nonelectrolytic preconcentration step in which BiIII is complexed by the surface modifier in a solution of 0.05 M KNO3-0.0106 M HNO3 (pH 2.0) and a subsequent electrochemical scan step in which the preconcentrated BiIII was reduced and then oxidized promptly in supporting electrolyte of 0.5 M HNO3. The resulting DPSV anodic current was proportional to the concentration of BiIII ion over the range of 4.78 × 10−8–1.44 × 10−5 M. The detection limit was 4.78 × 10−8 M. The proposed method was used to determine bismuth in various samples. Various factors affecting the electrode behavior were also investigated at the same time.  相似文献   

9.
《Comptes Rendus Chimie》2014,17(5):465-476
A novel modified multiwall carbon nanotubes paste electrode with sodium dodecyl sulfate as a surfactant (SDS) has been fabricated through an electrochemical oxidation procedure and was used to electrochemically detect dopamine (DA), ascorbic acid (AA), uric acid (UA), and their mixture by cyclic voltammetry (CV) and differential voltammetry (DPV) methods. Several factors affecting the electrocatalytic activity of the hybrid material, such as the effect of pH, of the scan rate and of the concentration were studied. The bare carbon nanotubes paste electrode (BCNTPE) and SDS-modified carbon nanotubes paste electrode (SDSMCNTPE) were characterized using Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive X-ray spectroscopy (EDX). Using the CV procedure, a linear analytical curve was observed in the 1 × 10−6–2.8 × 10−5 M range with a detection limit at 3.3 × 10−7 M in pH 6.5, 0.2 M phosphate buffer solutions (PBS).  相似文献   

10.
An electrochemical study of the anthelmintic drug bithionol using edge plane pyrolytic graphite electrode (EPPGE) is presented for the first time by applying different electrochemical techniques, such as cyclic voltammetry (CV), square‐wave voltammetry (SWV), square‐wave adsorptive stripping voltammetry (SWAdSV), and alternating current (AC) impedance spectroscopy. Mechanistic aspects of the electrode reaction were studied implying a quasireversible electrode reaction from an adsorbed state of the reactant, coupled with a follow‐up chemical reaction to a final electroinactive product. The overall mechanism appears totally irreversible under conditions of CV at moderate scan rate, while being quasireversible under conditions of the fast SWV. Furthermore, an optimisation of the analytical procedure for quantitative determination of bithionol was conducted by applying SWV in an adsorptive stripping mode. The calibration curve was constructed in the concentration range of 0.1–1.0 μmol L?1 (R2=0.9984) with a sensitivity of 3.6 μA L μmol?1 and LOD of 26.7 nmol L?1. The simple and sensitive SWAdSV procedure was proved to be suitable for the analysis of spiked urine samples.  相似文献   

11.
《Electroanalysis》2006,18(15):1523-1530
In this study, a glassy carbon electrode (GC) was modified with an electropolymerized film of 1‐naphthylamine (1‐NAP) with a subsequent overoxidation treatment in 0.2 M sodium hydroxide solution. This polymer p‐1‐NAPox film coated GC electrode was used for the selective determination of dopamine (DA) in the presence of a triple concentration of ascorbic acid (AA).These studies were performed using cyclic voltammetry and square‐wave voltammetry at physiological pH. p‐1‐NAPox shows an attractive permselectivity, a marked enhancement of the current response and antifouling properties when compared to a bare GC electrode activated in basic media. With a preconcentration time of 3 minutes at open circuit, linear calibration plots were obtained for DA in buffer solution (pH 7.4) over the concentration range from 1×10?6–1×10?4 M with a detection limit of 1.59×10?7 M.  相似文献   

12.
An electropolymerized film of eriochrome black T (EBT) has been prepared at a glassy carbon electrode (GCE) by cyclic voltammetry (CV). The poly(EBT) membrane at GCE exhibits an excellent electrocatalytic activity towards the oxidation of epinephrine (EP), ascorbic acid (AA) and uric acid (UA) in acidic solution and reduced the overpotential for the oxidation of EP. The poly(EBT)-coated electrode could separately detect EP, AA and UA in their mixture with the potential differences of 180 and 160 mV for EP-AA and UA-EP, respectively, which are large enough to allow for determination of EP in the presence of AA and UA. Using differential pulse voltammetry, the peak current of EP recorded in pH 3.5 solution was linearly dependent on EP's concentration in the range of 2.5 - 50 microM. Due to its good selectivity and stability, the polymer-coated GCE was successfully applied to the determination of EP in real samples.  相似文献   

13.
《Solid State Sciences》2012,14(3):362-366
A conductive composite film consisted of natural nanostructure attapulgite (AT) with poly(methylene blue) (PMB) was constructed on glassy carbon (GC) electrode. The electrode exhibited an effective electrocatalytic activity towards the oxidation of ascorbic acid (AA) and well-defined oxidation peaks were observed in 0.1 M phosphate buffer solutions (PBS, pH 7.0) via cyclic voltammetry. Linear calibration plot was obtained over the range of 1.0 × 10−5 to 5.0 × 10−2 M for ascorbic acid with the detection limit value of 1.0 × 10−6 M. The main interfering factor in biological samples was experimentally excluded. In addition, UV–Vis spectra were applied to reveal the formation of the nanocomposite film of PMB-AT.  相似文献   

14.
The voltammetric oxidation and determination of chlorpheniramine maleate (CPM) was studied at a carbon paste electrode (CPE) in the presence of sodium‐dodecyl sulfate (SDS) by cyclic and differential pulse voltammetry. The results indicated that the voltammetric response of chlorpheniramine maleate was markedly increased in the low concentration of SDS, suggesting that SDS exhibits observable enhancement effect to the determination of chlorpheniramine maleate. Under the optimal conditions the peak current was proportional to chlorpheniramine maleate concentration in the range of 8.0×10−6 to 1.0×10−4 M with detection limit of 1.7×10−6 M by differential pulse voltammetry. The proposed method was successfully applied to the determination of chlorpheniramine in pharmaceutical and urine samples.  相似文献   

15.
The electrochemical properties of hydrazine studied at the surface of a carbon paste electrode spiked with p‐bromanil (tetrabromo‐p‐benzoquinone) using cyclic voltammetry (CV), double potential‐step chronoamperometry and differential pulse voltammetry (DPV) in aqueous media. The results show this quinone derivative modified carbon paste electrode, can catalyze the hydrazine oxidation in an aqueous buffered solution. It has been found that under the optimum conditions (pH 10.00), the oxidation of hydrazine at the surface of this carbon paste modified electrode occurs at a potential of about 550 mV less positive than that of a bar carbon paste electrode. The electrocatalytic oxidation peak current of hydrazine showed a linear dependent on the hydrazine concentrations and linear analytical curves were obtained in the ranges of 6.00×10?5 M–8.00×10?3 M and 7.00×10?6 M–8.00×10?4 M of hydrazine concentration with CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 3.6×10?5 M and 5.2×10?6 M by CV and DPV methods. This method was also used for the determination of hydrazine in the real sample (waste water of the Mazandaran wood and paper factory) by standard addition method.  相似文献   

16.
《中国化学会会志》2018,65(6):743-749
A glassy carbon electrode (GCE) modified with a copper‐based metal‐organic framework (MOF) [HKUST‐1, HKUST‐1 = Cu3(BTC)2 (BTC = 1,3,5‐benzenetricarboxylicacid)] was developed as a highly sensitive and simple electrochemical sensor for the determination of dopamine (DA). The MOF was prepared by a hydrothermal process, and the morphology and crystal phase of the MOF were characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD), respectively. Meanwhile, the electrochemical performance was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the modified electrode showed excellent electrocatalytic activity and high selectivity toward DA. The linear response range was from 5.0 × 10−7 to 1.0 × 10−4 M and the detection limit was as low as 1.5 × 10−7 M. Moreover, the electrochemical sensor was used to detect DA in real samples with excellent results. MOF‐based sensors hold great promise for routine sensing applications in the field of electrochemical sensing.  相似文献   

17.
The electrochemical behavior of salvianic acid A sodium (SAS), a main active content in Chinese herbal medicine (CHM), was studied for the first time by cyclic voltammetry (CV). A new electroanalytical method of SAS was erected using differential pulse voltammetric (DPV) technique. In pH 3.3 britton‐robinson (B‐R) buffer solution, the medicine showed a pair of redox peaks driven by adsorption. The electrode process involved two electrons and two protons transformation with apparent rate constant (ks) of 2.85 s?1 and transfer coefficient (α) of 0.81. Based on understanding the electrochemical process of SAS at the glassy carbon electrode (GCE), analysis of SAS can be realized. The oxidation peak currents showed linear with the concentrations of SAS in the range of 5.45 × 10?8 to 1.09 × 10?5 M. The limit of detection was 5.45 × 10?8 M. The proposed method has high sensitivity, wide linear range, and was successfully applied to quantitative determination of the SAS in Rukuaixiao Tablets.  相似文献   

18.
An electrochemical method for the preparation of poly(pyronin B) film was proposed in this paper. A poly(pyronin B) (poly(PyB)) film modified glassy carbon electrode (GCE) has been fabricated via an electrochemical oxidation procedure and applied to the electrocatalytic oxidation of reduced form of nicotinamide adenine dinucleotide (NADH). The poly(PyB) film modified electrode surface has been characterized by atomic force microscope (AFM), scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), UV‐visible absorption spectrophotometry (UV‐vis) and cyclic voltammetry (CV). These studies have been used to investigate the poly(PyB) film, which demonstrates the formation of the polymer film and the excellent electroactivity of poly(PyB) in neutral and even in alkaline media. Due to its potent catalytic effects towards the electrooxidation of NADH at lower potential (0.0 V), poly(PyB) film modified electrode can be used for the selective determination of NADH in real samples because of dopamine, ascorbic acid and uric acid oxidation can be avoided at this potential. The catalytic peak currents are linearly dependent on the concentrations of NADH in the range of 1.0×10?6 to 5.0×10?4 mol/L with correlation coefficients of 0.999. The detection limits for NADH is 0.5×10?6 mol/L. Poly(PyB) modified electrode also shows good stability and reproducibility due to the irreversible attachment of polymer film at GCE surface.  相似文献   

19.
In this paper an ionic liquid modified carbon paste electrode (CILE) was prepared and methylene blue (MB) was electropolymerized on the CILE by using the cyclic voltammetric technique in the potential range from −1.0 V to 0.8 V (vs. SCE). A stable polymer film was obtained and exhibited a pair of redox peaks. The morphology and characteristics of poly(methylene blue) (PMB) film was studied by the techniques such as scanning electron microscopy and electrochemical impedance spectroscopy. This PMB modified CILE (PMB/CILE) showed excellent electrocatalytic response to 3,4‐dihydroxybenzoic acid with the increase of the electrochemical responses. The oxidation peak current had a linear relationship with 3,4‐dihydroxybenzoic acid concentration in the range of 5.0 × 10−4 ∼ 3.0 × 10−2 mol L−1 and the detection limit was 1.72 × 10−4 Mol L−1 (3 σ).  相似文献   

20.
The properties of poly(3,4-ethylenedioxythiophene) (PEDT) film have been studied in iodide solutions by cyclic voltammetry and stripping voltammetry methods. It has been shown that formation of charge-transfer complexes between iodine species and polymeric rings promotes storage of iodine on an electrode covered by PEDT film. Due to this behaviour the PEDT layer can be employed for electroanalysis of dilute (10−4–10−3 M) solutions of iodide salts by stripping voltammetry methods. The possibility of PEDT film application for zinc-iodide rechargeable batteries was also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号