首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel cylindrical polymer brushes consisting of poly(diphenylacetylene) main chain and poly(poly(ethylene glycol) methyl ether monomethacrylate) (PPEGMA) side chains were synthesized by the diphenylacetylene macromonomer or side chain initiated atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether monomethacrylate (PEGMA) from an bromo isobutyryl-bearing poly(diphenylacetylene) (poly(BrDPA)) method. The diphenylacetylene macromonomer, namely, DPA-PPEGMA, were prepared by the ATRP of PEGMA from bromo isobutyryl-bearing diphenylacetylene. DPA-PPEGMA was polymerized successfully with WCl6-Ph4Sn catalyst to give high molecular weight polymer brushes poly(DPA-PPEGMA). Meanwhile, polymer brushes (PDPA-g-PPEGMA) were obtained by ATRP of PEGMA from poly(BrDPA). The molecular weight of the side chains of PPEGMA could be controlled simply by modulating the ATRP time. The macromonomer and polymer brushes are soluble in nonpolar solvents such as toluene and chloroform. The polymers of poly(BrDPA) and poly(DPA-PPEGMA) absorb in the longer wavelength region, with two peaks at around 370 and 414 nm. The polymers are thermally stable and exhibit double crystallization and melting peaks during the cooling and heating scans.  相似文献   

2.
Graft copolymers formed by anchoring poly(ethylene glycol) (PEG) chains to conjugated polythiophene have been prepared by copolymerizing two compounds: unsubstituted α‐terthiophene (Th3) and a thiophene‐derived macromonomer having an α‐terthiophene conjugated sequence and one Th3 bearing a PEG chain with molecular weight of 2000 as substitute at the 3‐position of the central heterocycle (Th3‐PEG2000). The grafting ratio of the resulting copolymers (PTh3*g‐PEG), which were obtained using 75:25 and 50:50 Th3‐PEG2000:Th3 weight ratios, is significantly smaller than that of copolymers derived from polymerization of macromonomers consisting of a α‐pentathiophene sequence in which the central ring bears a PEG chain of Mw = 2000 (PTh5g‐PEG). The electroactivity and electrochemical stability of PTh3*g‐PEG is not only higher than that of PTh5g‐PEG but also higher than that of PTh3, the latter presenting a very compact structure that makes difficult the access and escape of dopant ions into the polymeric matrix during the redox processes. Furthermore, the optical π‐π* lowest transition energy of PTh3*g‐PEG is lower than that of both PTh5g‐PEG and PTh3. These properties, combined with suitable wettability and roughness, result in an excellent behavior as bioactive platform of PTh3*g‐PEG copolymers, which are more biocompatible, in terms of cellular adhesion and proliferation, and electro‐compatible than PTh5g‐PEG. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 239–252  相似文献   

3.
Cationic polyelectrolytes were synthesized and used as semipermanent coating materials for capillaries in electrophoresis. The polyelectrolytes used were a homopolymer of poly(methacryl oxyethyl trimethylammonium chloride) (PMOTAC) and its poly(ethylene glycol) (PEG)‐grafted analogue. Two PMOTAC polyelectrolytes, with molar masses of 85,000 and 300,000 g/mol, and PEG‐grafted PMOTAC with a molar mass of 280,000 g/mol were synthesized and then characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. Attachment of the polyelectrolytes to the wall of the fused silica capillary for electrophoresis caused the electroosmotic flow (EOF) to reverse. The polyelectrolyte coatings were tested over the pH range 2–11 at different buffer ionic strengths, and the most stable and strongest anodic EOFs were obtained at acidic pH values with low ionic strength buffers. Between runs the capillary is merely rinsed for 2 or 3 min with the background electrolyte solution. With the PMOTAC coatings at pH values ≤5, the RSDs of the EOFs were less than 2.9% after 60 injections. The effects of the molar mass of the polycation and of PEGylation of PMOTAC on the interactions between the polycations and basic proteins were studied at acidic pH values. The differences in the effective electrophoretic mobilities, resolution values, and plate numbers of the proteins with the different coatings were due to the EOF, as demonstrated through calculations of reduced mobilities, relative resolution values, and relative plate numbers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2655–2663, 2007  相似文献   

4.
Covalent grafting of poly(ethylene glycol) (PEG) to pharmaceutical proteins, "PEGylation", is becoming more commonplace due to improved therapeutic efficacy. As these conjugates encounter interfaces in manufacture, purification, and end use and adsorption to these interfaces may alter achievable production yields and in vivo efficacies, it is important to understand how PEGylation affects protein adsorption mechanisms. To this end, we have studied the adsorption of unmodified and PEGylated chicken egg lysozyme to silica, using optical reflectometry, total internal reflection fluorescence (TIRF) spectroscopy, and atomic force microscopy (AFM) under varying conditions of ionic strength and extent of PEG modification. PEGylation of lysozyme changes the shape of the adsorption isotherm and alters the preferred orientation of lysozyme on the surface. There is an abrupt transition in the isotherm from low to high surface excess concentrations that correlates with a change in orientation of mono-PEGylated conjugates lying with the long axis parallel to the silica surface to an orientation with the long axis oriented perpendicular to the surface. No sharp transition is observed in the adsorption isotherm for di-PEGylated lysozyme within the range of concentrations examined. The net effect of PEGylation is to decrease the number of protein molecules per unit area relative to the adsorption of unmodified lysozyme, even under conditions where the surface is densely packed with conjugates. This is due to the area sterically excluded by the PEG grafts. The other major effect of PEGylation is to make conjugate adsorption significantly less irreversible than unmodified lysozyme adsorption.  相似文献   

5.
In this work, capillary electrophoresis was applied to protein profiling of fractionated extracts of maize. A comparative study on the application of uncoated fused‐silica capillaries and capillaries modified with hydroxypropylmethylcellulose, ω‐iodoalkylammonium salt and a commercially available neutral capillary covalently coated with polyacrylamide is presented. The coating stability, background electrolyte composition, and separation efficiency were investigated. It was found that for zeins separation, the most stable and efficient was the capillary coated with polyacrylamide. Finally, the usefulness of these methods was studied for the differentiation of zein fraction in transgenic and nontransgenic maize. Zeins extracted from maize standards containing 0 and 5% m/m genetic modification were successfully separated, but slight differences were observed in terms of the zein content. Albumin and globulin fractions were analyzed with the use of unmodified fused‐silica capillary with borate buffer pH 9 and the capillary coated with polyacrylamide with phosphate buffer pH 3. In the albumin fraction, additional peaks were found in genetically modified samples.  相似文献   

6.
We prepared pure and mixed monolayers of methoxy-terminated poly(ethylene glycol)s (m-PEG's) chemically attached to silica surfaces by using m-PEG silane coupling agents of three different molecular weights. These films were subsequently characterized in water by atomic force microscopy (AFM). Images of pure m-PEG monolayers showed the formation of polymer brushes on silica. Force curves between two modified surfaces suggested that an increase in the number of oxyethylene (OE) groups from 6 (PEG6 surface) to 43 (PEG43 surface) to 113 (PEG113 surface) decreased the flexibility of the m-PEG chains in the m-PEG brushes. Frictional force measurements also showed that the friction increased in the order PEG6 < PEG43 相似文献   

7.
8.
To detect the quality of medicinal human albumin by capillary electrophoresis, we produced a fused‐silica capillary coated with thermally cross‐linked poly(vinyl pyrrolidone) to prohibit protein adsorption. This type of capillary was easily obtained by injecting an aqueous poly(vinyl pyrrolidone) solution into a fused‐silica capillary and thermally annealing it at 200°C. Notably, stable and low electro‐osmotic flow was obtained in the poly(vinyl pyrrolidone)‐coated capillary at pH 2.20–9.00, and the separation of a mixture of four basic proteins indicated that the poly(vinyl pyrrolidone)‐coated capillary exhibits excellent repeatability and separation efficiency; moreover, the separation of these four basic proteins could even be achieved at pH 7.00. The protein recovery percentage of human serum albumin in a single‐protein solution and a mixed blood proteins solution was determined to be 97.03 and 95.40% in the poly(vinyl pyrrolidone)50–3 (representing the concentration of the capillary‐injected poly(vinyl pyrrolidone) aqueous solution, 50 mg/mL, and thermal annealing time, 3 h) capillary, respectively. Based on these results, we used the poly(vinyl pyrrolidone)50–3‐coated capillary to quantify the protein content of human albumin, and the results obtained from run to run, day to day and capillary to capillary demonstrated that the coated capillary could be used for quality testing commercially available human albumin.  相似文献   

9.
In this study, we immobilized enzymes by combining covalent surface immobilization and hydrogel entrapment. A model enzyme, glucose oxidase (GOX), was first covalently immobilized on the surface of silica nanoparticles (SNPs) via 3‐aminopropyltriethoxysilane (APTES), and the resultant SNP‐immobilized enzyme was physically entrapped within photopolymerized hydrogels prepared from two different molecular weights (MWs) (575 and 8000 Da) of poly(ethylene glycol)(PEG). The hydrogel entrapment resulted in a decrease in reaction rate and an increase in apparent Km of SNP‐immobilized GOX, but these negative effects could be minimized by using hydrogel with a higher MW PEG, which provides higher water content and larger mesh size. The catalytic rate of the PEG 8000 hydrogel was about ten times faster than that of the PEG 575 hydrogel because of enhanced mass transfer. Long‐term stability test demonstrated that SNP‐immobilized GOX entrapped within hydrogel maintained more than 60% of its initial activity after a week, whereas non‐entrapped SNP‐immobilized GOX and entrapped GOX without SNP immobilization maintained less than 20% of their initial activity. Incorporation of SNPs into hydrogel enhanced the mechanical strength of the hydrogel six‐fold relative to bare hydrogels. Finally, a hydrogel microarray entrapping SNP‐immobilized GOX was fabricated using photolithography and successfully used for quantitative glucose detection. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
张淼  王雨晨  MUHAMMADAtif  陈丽娟  王延梅 《色谱》2020,38(9):1085-1094
制备了一种对溶菌酶具有可控吸附性能的混合刷涂层毛细管,用于毛细管电泳在线富集溶菌酶以提高其检测灵敏度。首先,分别通过阳离子开环聚合和可逆加成-断裂链转移(RAFT)聚合合成聚(2-甲基-2-噁唑啉)(PMOXA)和聚丙烯酸(PAA),然后将甲基丙烯酸缩水甘油酯(GMA)分别与PMOXA和PAA通过自由基共聚和RAFT聚合合成出聚(2-甲基-2-噁唑啉)-r-甲基丙烯酸缩水甘油酯(PMOXA-r-GMA)和聚丙烯酸-b-聚甲基丙烯酸缩水甘油酯(PAA-b-PGMA)。将PMOXA-r-GMA和PAA-b-PGMA的混合溶液以一定比例加入到毛细管内,通过加热即可制备出基于PMOXA和PAA的混合刷涂层毛细管。X射线光电子能谱(XPS)对毛细管原材料的表面组成研究结果表明,当混合溶液质量浓度为20 g/L、PMOXA-r-GMA和PAA-b-PGMA质量比为1:1时,所得涂层中羧基的含量随着PAA链长的增加而增加;异硫氰酸荧光素标记溶菌酶(FITC-溶菌酶)吸附实验结果显示,通过改变环境的pH和离子强度(I)可以调控涂层毛细管对溶菌酶的吸附和释放,在pH 7(I=10-5mol/L)条件下,毛细管可以吸附大量的溶菌酶,当条件变为pH 3(I=10-1mol/L)时,吸附的溶菌酶可以被释放出来。将这种具有溶菌酶可控吸附性能的涂层毛细管用于毛细管电泳在线富集溶菌酶,当PAA链长是PMOXA链长的2.2倍时,溶菌酶的灵敏度增强因子为17.69,检出限为8.7×10-5g/L;同一天内对溶菌酶连续测定5次以及连续测定5天,峰面积的日内、日间相对标准偏差(RSD)分别为2.9%和4.1%,迁移时间的日内、日间RSD分别为0.9%和2.1%。涂层的制备只需一步,简单易行,而且涂层具有很好的稳定性。本研究为毛细管电泳分析痕量蛋白质提供了一种简单有效的方法。  相似文献   

11.
Poly(N‐isopropylacrylamide‐co‐sodium acrylate) copolymer brushes grafted on SiO2‐coated quartz crystal surface were prepared with a surface‐immobilized initiator. The collapse and swelling of the thermally sensitive copolymer brushes in water were studied with quartz crystal microbalance in situ. The frequency and dissipation changes with the temperature increasing in the range 20–38 °C indicate that the brushes undergo a continuous collapse transition. Our results show that the copolymer brushes collapse to a state where the brushes were prepared. A hysteresis was observed in the cooling process. Fourier transform infrared (FTIR) results revealed that the formation of some additional hydrogen bonds within the copolymer chains at their collapsed state is responsible for the hysteresis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 770–778, 2006  相似文献   

12.
The electro‐osmotic flow, a significant factor in capillary electrophoretic separations, is very sensitive to small changes in structure and surface roughness of the inner surface of fused silica capillary. Besides a number of negative effects, the electro‐osmotic flow can also have a positive effect on the separation. An example could be fused silica capillaries with homogenous surface roughness along their entire separation length as produced by etching with supercritical water. Different strains of methicillin‐resistant and methicillin‐susceptible Staphylococcus aureus were separated on that type of capillaries. In the present study, fused‐silica capillaries with a gradient of surface roughness were prepared and their basic behavior was studied in capillary zone electrophoresis with UV‐visible detection. First the influence of the electro‐osmotic flow on the peak shape of a marker of electro‐osmotic flow, thiourea, has been discussed. An antifungal agent, hydrophobic amphotericin B, and a protein marker, albumin, have been used as model analytes. A significant narrowing of the detected zones of the examined analytes was achieved in supercritical‐water‐treated capillaries as compared to the electrophoretic separation in smooth capillaries. Minimum detectable amounts of 5 ng/mL amphotericin B and 5 μg/mL albumin were reached with this method.  相似文献   

13.
A series of amphiphilic triblock copolymers, methoxy poly(ethylene glycol)‐b‐poly(octadecanoic anhydride)‐b‐methoxy poly(ethylene glycol) (mPEG‐b‐POA‐b‐mPEG), were prepared via melt polycondensation of methoxy poly(ethylene glycol) (mPEG) and poly(octadecanoic anhydride) (POA). mPEG‐b‐POA‐b‐mPEG were characterized by FTIR, 1H‐NMR, GPC, DSC, and XRD. Drug‐loaded mPEG‐b‐POA‐b‐mPEG nanoparticles (NPs) with spherical morphology and narrow size polydispersity index were prepared by nanoprecipitation technique with paclitaxel as the model drug. In vitro release behaviors of drug‐loaded NPs present that the biphasic process and the release mechanism of each phase are zero order drug releases. According to this study, mPEG‐b‐POA‐b‐mPEG NPs could serve as suitable delivery agents for paclitaxel and other hydrophobic drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Surface-grafted block copolymer brushes with continuous composition gradients containing poly(poly(ethylene glycol) monomethacrylate) (P(PEGMA)) and poly(N-isopropylacrylamide) (PNIPAAm) chains were fabricated by integration of the surface-initiated atom transfer radical polymerization (SI-ATRP) and continuous injection method.Three types of copolymer gradients were prepared: (1) a uniform P(PEGMA) layer was block copolymerized with a gradient PNIPAAm layer (PP1);(2) a gradient P(PEGMA) layer was block copo...  相似文献   

15.
To create a novel vector for specifically delivering anticancer therapy to solid tumors, we used diafiltration to synthesize pH‐sensitive polymeric micelles. The micelles, formed from a tetrablock copolymer [poly(ethylene glycol)‐b‐poly(L ‐histidine)‐b‐poly(L ‐lactic acid)‐b‐poly(ethylene glycol)] consisted of a hydrophobic poly(L ‐histidine) (polyHis) and poly(L ‐lactic acid) (PLA) core and a hydrophilic poly(ethylene glycol) (PEG) shell, in which we encapsulated the model anticancer drug doxorubicin (DOX). The robust micelles exhibited a critical micellar concentration (CMC) of 2.1–3.5 µg/ml and an average size of 65–80 nm pH 7.4. Importantly, they showed a pH‐dependent micellar destabilization, due to the concurrent ionization of the polyHis and the rigidity of the PLA in the micellar core. In particular, the molecular weight of PLA block affected the ionization of the micellar core. Depending on the molecular weight of the PLA block, the micelles triggering released DOX at pH 6.8 (i.e. cancer acidic pH) or pH 6.4 (i.e. endosomal pH), making this system a useful tool for specifically treating solid cancers or delivering cytoplasmic cargo in vivo. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Capillary electrophoresis and electrokinetic chromatography are typically carried out in unmodified fused‐silica capillaries under conditions that result in a strong negative zeta potential at the capillary wall and a robust cathodic electroosmotic flow. Modification of the capillary wall to reverse the zeta potential and mask silanol sites can improve separation performance by reducing or eliminating analyte adsorption, and is essential when conducting electrokinetic chromatography separations with cationic latex nanoparticle pseudo‐stationary phases. Semipermanent modification of the capillary walls by coating with cationic polymers has proven to be facile and effective. In this study, poly([2‐(acryloyloxy)ethyl]trimethylammonium chloride) polymers were synthesized by reversible addition‐fragmentation chain transfer polymerization and used as physically adsorbed semipermanent coatings for capillary electrophoresis and electrokinetic chromatography separations. An initial synthesis of poly([2‐(acryloyloxy)ethyl]trimethylammonium chloride) polymer coating produced strong and stable anodic electroosmotic flow of –5.7 to –5.4 × 10−4 cm2/V⋅s over the pH range of 4–7. Significant differences in the magnitude of the electroosmotic flow and effectiveness were observed between synthetic batches, however. For electrokinetic chromatography separations, the best performing batches of poly([2‐(acryloyloxy)ethyl]trimethylammonium chloride) polymer performed as well as the commercially available cationic polymer polyethyleneimine, whereas polydiallylammonium chloride and hexadimethrine bromide did not perform well.  相似文献   

17.
To synthesize the novel molecular‐ and pH‐stimulus‐responsive hydrogel, we prepared poly(ethylene glycol)‐based hydrogel containing ionic groups. We evaluated the fundamental swelling/shrinking properties of the hydrogels synthesized by various conditions. Decreasing the molecular weight of a crosslinker provided the increasing of the equilibrium swelling ratio. Also, the equilibrium swelling ratio was changed by the introduction of functional ionic monomers and its compositions. Furthermore, the swelling/shrinking behaviors of the hydrogels were affected by the environmental condition of aqueous solution, in fact the hydrogels were considerably shrunk (to one‐fifth volume) using a di‐ionic solute in the aqueous solution through the ionic interactions between the hydrogel and the solutes. Additionally, the specific shrinking to diamine compounds was also observed in response to pH change. These results clearly show the swelling/shrinking responsibility of the hydrogels toward the molecular recognitions and its pH conditions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3153–3158  相似文献   

18.
19.
The synthesis of poly[(oligoethylene glycol) methyl ether acrylate] [poly(OEGA)] brushes was achieved via reversible addition‐fragmentation chain transfer (RAFT) polymerization and used to selectively immobilize streptavidin proteins. Initially, gold surfaces were modified with a trithiocarbonate‐based RAFT chain transfer agent (CTA) by using an ester reaction involving a gold substrate modified with 11‐mercapto‐1‐undecanol and bis(2‐butyric acid)trithiocarbonate. poly(OEGA) brushes were then prepared via RAFT‐mediated polymerization from the surface‐immobilized CTA. The immobilization of CTA on the gold surface and the subsequent polymer formation were followed by ellipsometry, X‐ray photoelectron spectroscopy, grazing angle‐Fourier transform infrared spectroscopy, atomic force microscopy, and water contact‐angle measurements. RAFT‐mediated polymerization method gave CTA groups to grafted poly(OEGA) termini, which can be converted to various biofunctional groups. The terminal carboxylic acid groups of poly(OEGA) chains were functionalized with amine‐functionalized biotin units to provide selective attachment points for streptavidin proteins. Fluorescence microscopy measurements confirmed the successful immobilization of streptavidin molecules on the polymer brushes. It is demonstrated that this fabrication method may be successfully applied for specific protein recognition and immobilization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
In this study, a novel drug‐carrying micelle composed of methoxy poly(ethylene glycol) (mPEG)‐b‐poly(L‐lactic acid) (PLLA) with gas‐forming carbonate linkage was fabricated. Here, the gas‐forming carbonate linkage was formed by the chemical coupling of the terminal hydroxyl group of the PLLA block and benzyl chloroformate (BC). mPEG‐b‐PLLA‐BC was self‐organized in aqueous solution: the PEG block on the hydrophilic outer shell and the PLLA‐BC block in the hydrophoboic innor core. The cleavage of carbonate linkage by hydrolysis and formation of carbon dioxide nanobubbles in the micellar core enabled an accelerated release of the encapsulated anticancer drug (doxorubicin: DOX) from the mPEG‐b‐PLLA‐BC micelles. The amount of drug (DOX) released from the mPEG‐b‐PLLA‐BC micelle was higher than that from the conventional mPEG‐b‐PLLA micelle, which allowed for increased in vitro toxicity against KB tumor cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号