首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Schisandra lignans, mainly including schizandrol A, schizandrol B, schisantherin A, schizandrin A, schizandrin B, etc., are the major active ingredients of Schisandra chinensis . In the present study, a robust liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method was developed for the simultaneous quantification of schisandra lignans in rat primary hepatocytes. Lovastatin was used as an internal standard, and chromatographic separation was achieved on a Shimadzu C18 column with a gradient elution at the flow rate of 0.2 mL/min. All of the analytes were detected in multiple reaction monitoring mode with positive electrospray ionization since the sodium adduct ion [M + Na]+ was observed as the most intensive peak in the MS spectrum. For schizandrol A, schisantherin A and schizandrin A, the dynamic range was within 2–1000 ng/mg protein, and the linear range of schizandrol B and schizandrin B was from 5 to 1000 ng/mg protein. The intra‐ and inter‐day precision was <15% and the accuracy (relative error) ranged from −15 to 15%. No significant variation was observed in the stability tests. The validated method was then successfully applied to the time‐dependent uptake study for the Schisandra Lignan Extract in rat primary hepatocytes.  相似文献   

2.
A simple and rapid method for determination of six lignans found in plant cell cultures of Schisandra chinensis was developed and validated. The lignans were extracted from plant samples with methanol and the extracts were effectively cleaned by solid‐phase extraction using Strata C18‐E (Phenomenex) cartridges. Chromatographic separation was carried out on a Chromolith Performance RP‐18e monolithic column (100 × 4.6 mm, Merck) using an isocratic mobile phase of acetonitrile and water in a 50:50 (v/v) ratio. The eluent was monitored at 220 nm. The baseline separation of schizandrin, gomisin A, deoxyschizandrin, γ‐schizandrin, gomisin N and wuweizisu C was achieved in a relatively short time period (20 min), which was made possible by the relatively high flow rate of the mobile phase (2 mL/min). The lower limit of quantitation was 0.1 mg/L for schizandrin and gomisin A, 0.3 mg/L for deoxyschizandrin, γ‐schizandrin, and gomisin N and 1 mg/L for wuweizisu C. The analysis of spiked samples containing six lignans provided absolute recoveries between 93 and 101% in all cases. The validated method was successfully applied to the determination of lignans in embryogenic plant cell cultures of Schisandra chinensis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The fruit of Schisandra chinensis is a well‐known herbal medicine and dietary supplement due to a variety of biological activities including antihepatotoxic and antihyperlipidemic activities. However, the simultaneous validation methodology and pharmacokinetic investigation of nine lignans of S. chinensis extract in biological samples have not been proved yet. Thus, the present study was undertaken to develop the proper sample preparation method and simultaneous analytical method of schisandrol A, gomisin J, schisandrol B, tigloylgomisin H, angeloylgomisin H, schisandrin A, schisandrin B, gomisin N, and schisandrin C in the hexane‐soluble extract of S. chinensis to apply for the pharmacokinetic study in rats. All intra‐ and interprecisions of nine lignans were below 13.7% and accuracies were 85.1–115% and it is enough to evaluate the pharmacokinetic parameters after both intravenous and oral administration of hexane‐soluble extract of S. chinensis to rats.  相似文献   

4.
Summary. Different parts of the S. chinensis tree (seeds, seed shells, fruits, leaves, and shoots) were characterized by means of analytical pyrolysis – gas chromatography/mass spectrometry. The samples were pyrolyzed at 350°C leading to the evaporation of the thermally stable lignans. Besides the quantification of the lignans deoxyschisandrin, gomisin N, schisandrin, wuweizisu C, gomisin A, and angeloylgomisin H, further information about the composition of the plant parts, such as lignin, terpene, fatty acid, and carbohydrate content, could be obtained. The results were compared to the ones obtained by supercritical fluid extraction with carbon dioxide as well as literature data and were found to match.  相似文献   

5.
Lignans in the drug Fructus Schisandrae chinensis (FSC) exhibit potent biological activities such as antihepatotoxic, antiasthmatic, and antigastric ulcer. An ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method has been developed to evaluate the quality of FSC through simultaneous qualitative and quantitative analysis of 15 lignans, including schizandrin A, B, and C; schizandrol A and B; gomisin B, C, D, E, G, H, J, and N; tigloylgomisin H; and angeloylgomisin H. The compounds were separated on a Zorbax Eclipse Plus C(18) (2.1 × 100 mm, 1.8 μm) column with a gradient elution of acetonitrile and 0.1% formic acid. Lignans were identified through their retention times, accurate mass data, and characteristic ions by comparison with a reference substance. All calibration curves showed perfect linear regression (r(2) > 0.99) within the test range. The limits of detection and quantitation fell in the ranges of 0.1-4 ng/mL for all the analytes with an injection of 10 μL. Good results were obtained with respect to repeatability (relative standard deviation <4.6%) and recovery (85.58-105.82%). Meanwhile, the entire sample analysis time was less than 10 min. This developed method provided a new basis for the overall assessment of the quality of FSC.  相似文献   

6.
A reliable and sensitive ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed for the determination of zanubrutinib in the plasma of beagle dogs. The column used was an Acquity BEH C18 column (2.1 mm × 50 mm, 1.7 μm), maintained at 40°C with an injection volume of 2 μl. The gradient elution program was as follows: 0–1 min, 10–10% A; 1–1.1 min, 10–90% A; 1.1–2.1 min, 90–90% A; 2.1–2.2 min, 90–10% A; 2.2–3.0 min, 10–10% A. Mobile phase A was 0.1% formic acid, B was acetonitrile, and the total analysis time was 3 min. The mass spectrometry was performed in positive ion mode, and the scanning mode was multi-reaction monitoring mode with electrospray ionization as the ion source; m/z 472.2 → 455.01 for zanubrutinib and m/z 441.03 → 137.99 for ibrutinib (internal standard). The plasma samples were processed by protein precipitation. The standard curve showed good linearity (r2 = 0.999 8) in the range of 1.0–1,000 ng/ml (zanubrutinib) with a low limit of quantification of 1 ng/ml. Also, the intra-day and inter-day precision (RSD) was <5.88% and the accuracy (RE) ranged from −1.56 to 1.08%; the recoveries of zanubrutinib in beagle plasma ranged from 90.12 to 93.53% (RSD 1.67–6.42%) and the ME values of zanubrutinib were 98.70–101.06% (RSD 5.37–8.49%, n = 6). All values meet US Food and Drug Administration requirements. A rapid, highly selective and sensitive method for the determination of zanubrutinib concentration in plasma by UPLC–MS/MS was successfully developed. This method is suitable for pharmacokinetic studies in beagle dogs by following oral administration of zanubrutinib.  相似文献   

7.
Abstract

One new sesquiterpene (α-iso-cubebenol acetate, 8), together with 9 known compounds (1-7, 9, 10) were isolated from the stems of Schisandra chinensis (Turcz.) Baill. by repeated silica gel column chromatography. Based on the results of MS, NMR spectra and comparing with literature data, the six dibenzocyclooctadiene lignans were identified as schizandrin A to C (1-3), schizandrin (4), schisantherin A (5) and gomisin J (6), the two sesquiterpenes were identified as α-iso-cubebenol (7) and α-iso-cubebenol acetate (8), while the two triterpenic acids were identified as ganwuweizic acid (9) and kadsuric acid (10). The antifeedant activity of the 10 compounds against Tribolium castaneum adults was tested. Gomisin J (6) exhibited activity at 1500?ppm concentration with 40.3% antifeeding index percentages. As for the dibenzocyclooctene lignans (compounds 1–3, 6), the number of methylenedioxies and the position of hydroxyl groups were the main factors to affect their antifeedant activities.  相似文献   

8.
Saururus chinensis (SC) possesses significant anti-diabetic activity and lignans were its major bioactive compounds. In this study, a rapid and sensitive ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method was established for simultaneous quantification of six lignans, namely (-)-(7R,8R)-machilin D ( 1 ), verrucesin ( 2 ), rel-(7S,8S,7′R,8′R)-3,3′,4,4′,5,5′-hexamethoxy-7.O.7′,8.8′-lignan ( 3 ), manassantin A ( 4 ), manassantin B ( 5 ), and saucerneol F ( 6 ) in rat’s plasma. It was validated with acceptable linearity (r ≥ 0.9922), accuracy (80.42–95.17%), precision (RSD ≤ 12.08%), and extraction recovery (80.36–93.45%). The method was successfully applied to the comparative pharmacokinetic study of the six lignans in normal and diabetic rats after oral administration of SC extract. Results showed that the areas under the plasma concentration-time curve (AUC0 → t and AUC0 → ∞) of (-)-(7R,8R)-machilin D, rel-(7S,8S,7′R,8′R)-3,3′,4,4′,5,5′-hexamethoxy-7.O.7′,8.8′-lignan, manassantin B, and saucerneol F in diabetic rats were significantly increased, and the plasma clearance (CL) of (-)-(7R,8R)-machilin D in diabetic rats was significantly decreased. However, the AUC0 → t and AUC0 → ∞ of verrucesin were significantly decreased, and its CL was significantly increased in diabetic rats compared with those in normal rats. These results indicated that there were remarkable differences in the pharmacokinetic parameters between the normal and diabetic rats. The pharmacokinetic studies might be beneficial for the clinical use of SC as hypoglycemic agent.  相似文献   

9.
In this work, we developed and validated a highly sensitive, rapid and stable LC–MS/MS method for the determination of ibuprofen in human plasma with ibuprofen-d3 as a stable isotopically labeled internal standard (SIL-IS). Human plasma samples were prepared by one-step protein precipitation. The chromatographic separation was achieved on a Poroshell 120 EC-C18 (2.1 × 50 mm, 2.7 μm). Aqueous solution (containing 0.05% acetic acid and 5 mm NH4Ac) and methanol were selected as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in negative ion mode. Multiple reaction monitoring mode was used for quantification using target fragment ions m/z 205.0 → 161.1 for ibuprofen and m/z 208.0 → 164.0 for SIL-IS, respectively. This method exhibited a linear range of 0.05–36 μg/ml for ibuprofen with correlation coefficient >0.99. Mean recoveries of ibuprofen in human plasma ranged from 78.4 to 80.9%. The RSD of intra- and inter-day precision were both < 5%. The accuracy was between 88.2 and 103.67%. The matrix effect was negligible in human plasma, including lipidemia and hemolytic plasma. A simple, efficient and accurate LC–MS/MS method was successfully established and applied to a pharmacokinetic study in healthy Chinese volunteers after a single oral administration of ibuprofen granules.  相似文献   

10.
We developed and validated a semi‐automated LC/LC‐MS/MS assay for the quantification of imatinib in human whole blood and leukemia cells. After protein precipitation, samples were injected into the HPLC system and trapped onto the enrichment column (flow 5 mL/min); extracts were back‐flushed onto the analytical column. Ion transitions [M + H]+ of imatinib (m/z = 494.3 → 394.3) and its internal standard trazodone (372.5 → 176.3) were monitored. The range of reliable response was 0.03–75 ng/mL. The inter‐day precisions were: 8.4% (0.03 ng/mL), 7.2% (0.1 ng/mL), 6.5% (1 ng/mL), 8.2% (10 ng/mL) and 4.3% (75 ng/mL) with no interference from ion suppression. Autosampler stability was 24 hs and samples were stable over three freeze–thaw cycles. This semi‐automated method is simple with only one manual step, uses a commercially available internal standard, and has proven to be robust in larger studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Xanthii Fructus is extensively used as an herbal medicine. Ingestion of this herb is associated with severe hepatotoxicity and nephrotoxicity. Atractyloside and carboxyatractyloside are two dominative toxic constituents in Xanthii Fructus. However, their pharmacokinetic study is lacking. In this study, a novel high‐performance liquid chromatography‐tandem mass spectrometry method was developed to simultaneously quantify the rat plasma concentrations of atractyloside and carboxyatractyloside. After protein precipitation, the analytes were chromatographic separated on a ZORBAX Eclipse Plus column (2.1 × 150 mm id, 5 µm) under gradient elute. In the negative electrospray ionization mode, the transitions at m/z 725.3→645.4 for atractyloside, m/z 769.3→689.4 for carboxyatractyloside, and m/z 479.2→121.1 for paeoniflorin (the internal standard) were acquired by multiple reaction monitoring. This analytical method showed good linearity over 1–500 ng/mL for atractyloside and 2–500 ng/mL for carboxyatractyloside with acceptable precision and accuracy. No matrix effect, instability and carryover occurred in the analysis procedure. The extraction recoveries were greater than 85.0%. This method was applied to a preliminary pharmacokinetic study by orally administering Xanthii Fructus extract (9 g/kg) to rats, which was useful to evaluate the role of these two compounds in Xanthii Fructus‐induced toxicity.  相似文献   

12.
A liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the quantification of tunicamycin in rat plasma as per regulatory guideline. Chromatography of tunicamycin and the IS in the processed plasma samples was achieved on an X‐Terra phenyl column using a binary gradient (mobile phase A, acetonitrile and mobile phase B, 5 mm ammonium formate) elution at a flow rate of 0.6 ml/min. LC–MS/MS was operated under the multiple reaction monitoring mode using the electrospray ionization technique in positive ion mode and the transitions of m/z 817.18 → 596.10, 831.43 → 610.10, 845.29 → 624.10, 859.23 → 638.10 and 309.24 → 163.20 were used to quantitate homologs A–D and the IS, respectively. The total chromatographic run time was 4.5 min. The correlation coefficient (r2) was >0.99 for all homologs with accuracy 90.7–107.4% and precision 0.74–15.1%. The recovery of homologs was 78.6–90.2%. No carryover was observed and the matrix effect was minimal. Tunicamycin four homologs were found to be stable on the bench‐top for 6 h, for up to three freeze–thaw cycles, in the injector for 24 h and for 1 month at ?80 ° C. The applicability of the validated method has been demonstrated in a rat pharmacokinetic study.  相似文献   

13.
The aim of this study was to develop an analytical method to determine mequitazine in rat plasma and urine. Mequitazine was separated by UPLC–MS/MS equipped with a Kinetex core–shell C18 column (50 × 2.1 mm, 1.7 μm) using 0.1% (v/v) aqueous formic acid and acetonitrile containing 0.1% (v/v) formic acid as a mobile phase by gradient elution at a flow rate of 0.3 mL/min. Quantitation of this analysis was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique operating in multiple reaction monitoring positive ion mode. Mass transitions were m/z 323.3 → 83.1 for mequitazine and 281.3 → 86.3 for imipramine as internal standard. Liquid–liquid extraction with ethyl acetate and protein precipitation with methanol were used for sample extraction. Chromatograms showed that the method had high resolution, sensitivity and selectivity without interference from plasma constituents. Calibration curves for mequitazine in rat plasma and urine were 0.02–200 ng/mL, showing excellent linearity with correlation coefficients (r2) >0.99. Both intra‐ and inter‐day precisions (CV%) were within 4.08% for rat plasma and urine. The accuracies were 99.58–102.03%. The developed analytical method satisfied the criteria of international guidance. It could be successfully applied to pharmacokinetic studies of mequitazine after oral and intravenous administration to rats.  相似文献   

14.
A sensitive, selective and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the quantification of gypenoside XLIX, a naturally occurring gypenoside of Gynostemma pentaphyllum in rat plasma and then validated according to the US Food and Drug Administration's Guidance for Industry: Bioanalytical Method Validation . Plasma samples were prepared by a simple solid‐phase extraction. Separation was performed on a Waters XBridgeTM BEH C18 chromatography column (4.6 × 50 mm, 2.5 μm) using a mobile phase of acetonitrile and water (62.5:37.5, v /v). Gypenoside XLIX and the internal standard gypenoside A were detected in the negative ion mode using selection reaction monitoring of the transitions at m/z 1045.6 → 913.5 and 897.5 → 765.4, respectively. The calibration curve was linear (R 2 > 0.990) over a concentration range of 10–7500 ng/mL with the lower quantification limit of 10 ng/mL. Intra‐ and inter‐day precision was within 8.6% and accuracy was ≤10.2%. Stability results proved that gypenoside XLIX and the IS remained stable throughout the analytical procedure. The validated LC–MS/MS method was then applied to analyze the pharmacokinetics of gypenoside XLIX after intravenous administration to rats (1.0, 2.0 and 4.0 mg/kg).  相似文献   

15.
This study aims to develop and validate a simple and sensitive liquid chromatography with tandem mass spectrometry (LC–MS/MS) method for investigating the pharmacokinetic characteristics of bavachalcone. Liquid–liquid extraction was used to prepare plasma sample. Chromatographic separation of bavachalcone and IS was achieved using a Venusil ASB C18 (2.1 × 50 mm, 5 μm) column with a mobile phase of methanol (A)–water (B) (70:30, v /v). The detection and quantification of analytes was performed in selected‐reaction monitoring mode using precursor → product ion combinations of m/z 323.1 → 203.2 for bavachalcone, and m/z 373.0 → 179.0 for IS. Linear calibration plots were achieved in the range of 1–1000 ng/mL for bavachalcone (r 2 > 0.99) in rat plasma. The recovery of bavachalcone ranged from 84.1 to 87.0%. The method was precise, accurate and reliable. It was fully validated and successfully applied to pharmacokinetic study of bavachalcone.  相似文献   

16.
Tubuloside B, a novel neuroprotective phenylethanoid, is a major active constituent of Cistanche tubulosa and Cistanche deserticola. A specific and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method has been developed and validated for the quantification of tubuloside B in rat plasma. Sample preparation was conducted through a protein‐precipitation extraction with methanol using tubuloside A as internal standard (IS). Chromatographic separation was achieved using a Capcell Pak C18 column (2.0 × 50 mm, 5 μm) with a mobile phase of methanol–10 mm ammonium acetate buffer (70:30, v/v) in an isocratic elution. Mass spectrometry analysis was performed in negative ionization mode with selected reaction monitoring transitions at m/z 665.1 → 160.9 for tubuloside B, and m/z 827.1 → 160.9 for IS. Calibration curves were linear over the range of 1.64–1640 ng/mL for plasma samples samples (R2 > 0.990). The lower limit of quantification (LLOQ) was 1.64 ng/mL. The intra‐ and inter‐day accuracy was between 92.3 and 113.0% with the RSD <9.23% at all LLOQ and quality control levels. Finally, this method was successfully applied in the pharmacokinetics study of tubuloside B after intravenous administration.  相似文献   

17.
A highly sensitive LC–MS/MS method for simultaneous detection of both simvastatin (SV) and simvastatin acid (SVA) in beagle plasma was developed and successfully applied to an absolute bioavailability study. Lovastatin (LV) was used as internal standard (IS). The analysis was performed using electrospray ionization and selective reaction monitoring in positive mode at m/z 441.0 → 325.0 for SV, 459.0 → 343.0 for SVA and 427.0 → 325.0 for the IS, respectively. The assay procedure involved a simple liquid–liquid extraction of SV, SVA and LV from beagle plasma into methyl tert-butyl ether. Separation of SV, SVA and the IS was achieved on a Shim-pack VP-ODS column (150 × 2.0 mm, 5 μm) with a binary gradient solvent system of 0.1% formic acid in water and methanol (15:85, v/v) as the mobile phase. The method was validated over the range of 0.25–500 ng/ml for SV (r2 ≥ 0.9923) and 0.24–481.23 ng/ml for SVA (r2 ≥ 0.9987). The results of method validation for accuracy, precision, extraction recovery, matrix effect and stability were within the acceptance criteria. The values of absolute bioavailability of SV and SVA in beagles were 2.97 and 25.40%, respectively. It is the first study developed for the measurement of absolute bioavailability of SV and SVA acid in beagles.  相似文献   

18.
A bioanalytical method for the quantification of rosiglitazone in rat plasma and tissues (adipose tissue, heart, brain, bone, and kidney) using LC–MS/MS was developed and validated. Chromatographic separation was achieved on a Gemini C18 column (50 × 4.6 mm, 3 μm) using a mobile phase consisting of 10 mM ammonium formate (pH 4.0) and acetonitrile (10:90, v/v) at a flow rate of 0.8 mL/min and injection volume of 10 μL (internal standard: pioglitazone). LC–MS detection was performed with multiple reaction monitoring mode using target ions at m/z → 358.0 and m/z → 357.67 for rosiglitazone and pioglitazone (internal standard), respectively. The calibration curve showed a good correlation coefficient (r2) over the concentration range of 1–10,000 ng/mL. The mean percentage recoveries of rosiglitazone were found to be over the range of 92.54–96.64%, with detection and lower quantification limit of 0.6 and 1.0 ng/mL, respectively. The developed method was validated per U.S. Food and Drug Administration guidelines and successfully utilized to measure rosiglitazone in plasma and tissue samples. Further, the developed method can be utilized for validating specific organ-targeting delivery systems of rosiglitazone in addition to conventional dosage forms.  相似文献   

19.
A rapid, sensitive, and reliable analytical ultra performance liquid chromatography with tandem mass spectrometry method was developed for the simultaneous determination of Aralia‐saponin IV, 3‐O‐β‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐glucopyranosyl oleanolic acid 28‐O‐β‐d ‐glucopyranoside, Aralia‐saponin A and Aralia‐saponin B after the oral administration of total saponin of Aralia elata leaves in rat plasma. Plasma samples were pretreated by protein precipitation with methanol. The analysis was performed on an ACQUITY UPLC HSS T3 column. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using an electrospray ionization source with negative ionization mode. Under the experimental conditions, the calibration curves of four analytes had good linearity values (r > 0.991). The intra‐ and inter‐day precision values of the four analytes were ≤ 11.6%, and the accuracy was between –6.2 and 4.2%.The extraction recoveries of four triterpenoid saponins were in the range of 84.06–91.66% (RSD < 10.5%), and all values of the matrix effect were more than 90.30%. The developed analytical method was successfully applied to pharmacokinetic study on simultaneous determination of the four triterpenoid saponins in rat plasma after oral administration of total saponin of Aralia elata leaves, which helps guiding clinical usage of Aralia elata leaves.  相似文献   

20.
An ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC–MS/MS) method was developed and validated to concurrently determine rhynchophylline and hirsutine in rat plasma. The sample preparation of rat plasma was achieved by alkalization and liquid–liquid extraction. The mass transition of precursor ion → product ion pairs were monitored at m/z 385.2 → 160.0 for rhynchophylline, m/z 369.3 → 144.0 for hirsutine and m/z 414.0 → 220.0 for noscapine (internal standard). This method revealed linear relationships from 2.5 to 50 ng/mL (r2 > 0.997) for rhynchophylline and from 2.5 to 50 ng/mL (r2 > 0.998) for hirsutine. The limit of quantification values for rhynchophylline and hirsutine in rat plasma were both 2.5 ng/mL. Intra‐day and inter‐day precisions were within 10.6% and 12.5%, respectively, for rhynchophylline and hirsutine, and the accuracy (bias) was <10%. Liquid–liquid extraction of rat plasma samples resulted in insignificant matrix effect, and the extraction recoveries were >83.6% for rhynchophylline, 73.4% for hirsutine and 90.7% for the internal standard. This method was applied successfully to a pharmacokinetic study of rhynchophylline and hirsutine in rats after oral administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号