首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capillary isoelectric focusing in the presence of electroosmosis with sequential injection of carrier ampholytes and sample was found to be suitable for MS detection. The separate injection of the sample and the ampholytes provides good condition to suppress and overcome the undesirable effect of the presence of ampholytes in MS. By the appropriate selection of ampholyte solutions, whose pH range not necessarily covers the pI values of the analytes, the migration of the components can be controlled, and the impact of the ampholytes on MS detection is decreased. The unique applicability of this setup is shown by testing several parameters, such as the application of volatile electrolyte solutions, the type of the ampholytes, the order and the number of the ampholyte and sample zones. Broad and narrow pH range ampholytes were applied in experiments using uncoated capillaries with different lengths for the analyses of substituted nitrophenol dyes to achieve optimal conditions for the MS detection. Although the sample components are not leaving the pH gradient, due to the decrease in the ampholyte concentration at the position of the components, and because the sample components migrate in charged state, the ionisation is more effective for MS detection.  相似文献   

2.
Capillary isoelectric focusing (cIEF) was online coupled to a Q‐TOF MS by a flow‐through microvial interface for the analysis of therapeutic mAb. Intact molecular weights obtained from the mass spectrum deconvolution of separated charge variants provided information on the structural heterogeneity of therapeutic mAbs. A sandwich cIEF–MS configuration composed of anolyte, sample, and catholyte segments sequentially injected into a neutrally coated capillary was used for the charge heterogeneity separation of four mAbs. Acetic acid and ammonium hydroxide were used in places of the non‐volatile acids and bases commonly used for IEF but are incompatible with online MS detection. Glycerol was added as the anti‐convective reagent. A chemical modifier was mixed with the cIEF effluent in the flow‐throw microvial to maintain the ESI stability and to mitigate ion suppression from the co‐eluted carrier ampholytes and glycerol. Analysis of mAb samples have shown relative populations of two basic variants originating from C‐terminal lysine process and acidic variant of deamidation. The lysine clippings, deamidation, and sialic acid modification in oligosaccharide chains were revealed in infliximab. Two lysine clipping variants and a deamidated variant were observed in adalimumab. The duplicate analyses of a reference mAb demonstrated five charge variants separated by cIEF due to some unidentified modifications, as their mass spectra shared close similarities. The mAb analyses demonstrated the feasibility of the cIEF–MS method, and they demonstrated how charge and structural variants and minor differences in therapeutic mAbs are observed with this technology. Online cIEF–MS is an information rich technology with high throughput, demonstrated by the initial data presented here.  相似文献   

3.
高培峰  赵新颖  贺木易  刘庆生  屈锋 《色谱》2013,31(6):537-542
利用一步法和两步法毛细管等电聚焦(cIEF)方法分离测定了蛋白质和多肽的等电点(pI)。讨论了两步法等电聚焦过程所需的溶液组成、样品进样体积、聚焦电压、聚焦时间和分离条件等因素对分离效果的影响。并对一步法和两步法进行了比较。对细胞色素C、血红蛋白、肌红蛋白、转铁蛋白和牛血清白蛋白以及6种多肽的分析结果表明:一步法步骤简单,分离速度快,可测定单一组分的pI,也能快速分离混合蛋白和多肽,但分离度较差,且不能同时准确测定各组分的pI;两步法步骤复杂,分析时间较长,但能够同时分离并准确测定混合样品中各组分的pI,所测的pI值与单一组分进行测定的结果基本一致。两种方法可相互结合、互为补充,可广泛应用于两性生物微粒等电点的快速和准确测定。  相似文献   

4.
A novel method for the separation and detection of low molecular weight (LMW) acids was developed using monolithic immobilized pH gradient-based capillary isoelectric focusing coupled with mass spectrometry. Two main parameters, focusing conditions and delivery buffer conditions, which might affect separation efficiency, were optimized with the focusing time of 7 min at 350 V/cm and the delivery buffer of 50% (v/v) acetonitrile in 10 mmol/L ammonium formate (pH 3.0). Under these conditions, the linear correlation between the volume of delivery solvent and the pK(a) of the model components was observed. In addition, the separation mechanism of LMW acids was proposed as well. We suppose that this method may provide a useful tool for the characterization of LMW components (e.g. natural organic matter of different origins).  相似文献   

5.
Zhang Z  Wang J  Hui L  Li L 《Journal of chromatography. A》2011,1218(31):5336-5343
Herein we report a highly efficient and reliable membrane-assisted capillary isoelectric focusing (MA-CIEF) system being coupled with MALDI-FTMS for the analysis of complex neuropeptide mixtures. The new interface consists of two membrane-coated joints made near each end of the capillary for applying high voltage, while the capillary ends were placed in the two reservoirs which were filled with anolyte (acid) and catholyte (base) to provide pH difference. Optimizations of CIEF conditions and comparison with conventional CIEF were carried out by using bovine serum albumin (BSA) tryptic peptides. It was shown that the MA-CIEF could provide more efficient, reliable and faster separation with improved sequence coverage when coupled to MALDI-FTMS. Analyses of orcokinin family neuropeptides from crabs Cancer borealis and Callinectes sapidus brain extracts have been conducted using the established MA-CIEF/MALDI-FTMS platform. Increased number of neuropeptides was observed with significantly enhanced MS signal in comparison with direct analysis by MALDI-FTMS. The results highlighted the potential of MA-CIEF as an efficient fractionation tool for coupling to MALDI MS for neuropeptide analysis.  相似文献   

6.
We report a capillary isoelectric focusing system based on a sequential injection method for simplified chemical mobilization. This system was coupled to an ion trap mass spectrometer with an electrokinetically pumped nanoelectrospray interface. The nanoelectrospray emitter employed an acidic sheath electrolyte. To simplify focusing and mobilization, a plug of ammonium hydroxide was first injected into the capillary, followed by a section of mixed sample and ampholyte. During focusing, the NH3H2O section worked as catholyte. As focusing progressed, the NH3H2O section was titrated to lower pH by the acidic sheath electrolyte. Chemical mobilization started automatically once the ammonium hydroxide was consumed by the acidic sheath flow electrolyte, which then acted as the mobilization solution. In this report, the lengths of the NH3H2O section and sample were optimized. With a 1 m long capillary, a relative short plug of the NH3H2O section (3 cm) produced both fast migration and reasonable separation resolution. The simplified capillary isoelectric focusing mass spectrometry system produced base peak intensity relative standard deviation of 8.5% and migration time relative standard deviation ≤0.6% for myoglobin and cytochrome C in triplicate runs.  相似文献   

7.
毛细管等电聚焦和电渗泵驱动聚焦区带分离蛋白质   总被引:4,自引:0,他引:4  
建立了一种利用电渗泵驱动毛细管内的聚焦区带,实现毛细管电泳等电聚焦分离蛋白质的方法。通过控制电压来调节泵的输出流量,从而调节聚焦区带的迁移速度。适用于毛细管电泳等电聚焦两步法分离蛋白质等两性物质。考察了对牛血清白蛋白和溶菌酶两种粗提蛋白质混合物的分离,迁移时间的RSD分别为1.6%和1.3%,峰面积的RSD均为1.6%,证明方法可行。  相似文献   

8.
In this study, combination of capillary isoelectric focusing (CIEF) in tapered fused silica (FS) capillary with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is presented as an efficient approach for unambiguous identification of probiotic bacteria in real sample. For this purpose, bacteria within genus Lactobacillus were selected as model bioanalytes and cow's milk was selected as a biological sample. CIEF analysis of both the cultivated bacteria and the bacteria in the milk was optimized and isoelectric points characterizing the examined bacteria were subsequently determined independently of the bacterial sample origin. The use of tapered FS capillary significantly enhanced the separation capacity and efficiency of the CIEF analyses performed. In addition, the cell number injected into the tapered FS capillary was quantified and an excellent linearity of the calibration curves was achieved which enabled quantitative analysis of the bacteria by CIEF with UV detection. The minimum detectable number of bacterial cells was 2 × 106 mL−1. Finally, cow's milk spiked with the selected bacterium was analyzed by CIEF in tapered FS capillary, the focused and detected bacterial cells were collected from the capillary, deposited onto the cultivation medium, and identified using MALDI-TOF MS afterward. Our results have revealed that the proposed procedure can be advantageously used for unambiguous identification of probiotic bacteria in a real sample.  相似文献   

9.
Capillary electrophoresis analysis of transferrin in human serum is used to assess genetic variants after desialylation with neuraminidase and iron saturation to reduce the complexity of the transferrin pattern and thus facilitate the recognition of transferrin polymorphisms. Asialo‐transferrin forms are analyzed by capillary zone electrophoresis using assay conditions as for the monitoring of carbohydrate‐deficient transferrin or by capillary isoelectric focusing in a pH 5–8 gradient which requires immunoextraction of transferrin prior to analysis. With the carrier ampholytes used, peaks for iron saturated and iron depleted transferrin are monitored which indicates complexation of iron ions by carrier ampholytes. For BC, CD, and BD genetic variants, the expected peaks for B, C, and D forms of transferrin were detected with both methods. Monitoring of CC patterns revealed three cases, namely those producing double peaks in both methods, a double peak in capillary isoelectric focusing only and a double peak in capillary zone electrophoresis only. For all samples analyzed, data obtained by capillary isoelectric focusing could be confirmed with gel isoelectric focusing. The two capillary electrophoresis methods are shown to represent effective tools to assess unusual transferrin patterns, including genetic variants with dissimilar abundances of the two forms.  相似文献   

10.
Capillary isoelectric focusing (CIEF) separations are usually performed with neutral coated fused-silica capillaries in aqueous anticonvective media. Glycerol, a very viscous solvent (eta = 945 mPa x s at 25 degrees C), known to help stabilize any kind of proteins and solubilize hydrophobic ones, was tested as an alternative to using commercial gels. Viscosity and electroosmotic mobility were measured as a function of gel or glycerol content in water, and a 30:70 v/v glycerol-water medium appeared as a good compromise for performing CIEF in a bare fused-silica capillary without imposing too high a viscosity. To demonstrate the feasibility of this new CIEF system, a standard mixture of nine model proteins was separated according to their pI with a good agreement between experimental and literature aqueous pIs. Moreover, better resolution was achieved with this system than with the conventional aqueous CIEF system, as two of the model proteins could not be separated in the latter system. Glycerol-water CIEF in bare silica capillary was next applied to the separation of horse radish peroxidase, a complex mixture of protein isoforms. The good concordance with the separation obtained by the conventional CIEF system indicated the adequacy of this new system. Finally, as anticipated from the results obtained for the separation of bacteriorhodopsin, a membrane protein, glycerol-water CIEF performed in bare silica capillary appears to be a promising alternative to conventional aqueous CIEF for hydrophobic protein characterization, under their native form.  相似文献   

11.
In order to improve precision in protein analysis, a new rinsing procedure with 3M hydrochloric acid was investigated for linear polyacrylamide-coated capillaries used in isoelectric focusing. After each run the capillaries were rinsed with hydrochloric acid for 5 min, followed by water for 20 min (Deltap = 1030 mbar each). Myoglobin, beta-lactoglobulin, and ovalbumin were used as model proteins; the pH gradient was provided by Pharmalyte (pH 3-10). The resulting method was already successful in avoiding capillary blockages, even for long-series protein measurements. Further improvements in precision have been obtained by avoiding a complete standstill of liquid within the capillary when the separation system was idle. Pressure (Deltap = 300 mbar or more) and high voltage (30 kV) were therefore also applied during storage within a measurement series. The reproducibility of migration time and peak area are further improved with RSD% less than 10% in a long-term measurement (n = 86).  相似文献   

12.
13.
刘让东  许歆瑶  王薇薇  王彦  闫超 《色谱》2019,37(10):1090-1097
通过聚合物原位聚合反应,制备了部分填充的毛细管整体柱。pH 3~10的载体两性电解质被固化在该毛细管整体柱上。在引入八通进样阀、三通阀和四通连接单元的基础上,构建了适用于固化pH梯度毛细管等电聚焦整体柱(M-IPG)的平台。在蛋白质药物测定过程中,用M-IPG柱和羟丙基纤维素(HPC)涂层毛细管柱同时对曲托珠单抗和依那西谱的等电点进行了测定。结果表明,两种等电聚焦柱都能够同时分离混合蛋白质样品并测定蛋白质类药物中单抗和融合蛋白质的等电点(pI),M-IPG柱所测的pI值与HPC涂层毛细管柱测定的结果基本一致,表明了该柱在进一步构建多维分离平台进行蛋白质组学研究方面的潜力。  相似文献   

14.
Chemiluminescence detection was combined with capillary isoelectric focusing to perform protein analysis with high sensitivity. Luminol-H2O2 chemiluminescence was utilized, and heme proteins such as cytochrome c, myoglobin and peroxidase were analyzed. The proteins were focused by use of Pharmalyte 3-10 as ampholytes. Hydroxypropylmethyl-cellulose was added to the sample solution in order to easily reduce protein interactions with the capillary wall as well as the electroendoosmotic flow. The focused proteins were transported by salt mobilization to chemiluminescence detection cell equipped with an optical fiber. The present method showed significantly high sensitivity and wide dynamic range; the detection limit for cytochrome c was 6 x 10(-9) M and the linear dynamic range was greater than two-orders of magnitude (up to 2 x 10(-6) M).  相似文献   

15.
Capillary isoelectric focusing (CIEF) with cationic electrophoretic mobilization induced via replacing the catholyte with the anolyte or a solution of another acid or amino acid was investigated by computer simulation for a wide range pH gradient bracketed between two amphoteric spacers and short electrode vials with a higher id than the capillary. Dynamic simulations provide insight into the complexity of the mobilizing process in a hitherto inaccessible way. The electrophoretic mobilizing process begins with the penetration of the mobilizing compound through the entire capillary, is followed by a gradual or steplike decrease of pH, and ends in an environment with a non-homogenous solution of the mobilizer. Analytes do not necessarily pass the point of detection in the order of decreasing pI values. Cationic mobilization encompasses an inherent zone dispersing and refocusing process toward the capillary end. This behavior is rather strong with phosphoric acid and citric acid, moderate with aspartic acid, glutamic acid (GLU), formic acid, and acetic acid and less pronounced in the absence of the cathodic spacer. The data reveal that optical detectors should not be placed before 90% of capillary length. Aspartic acid, GLU, formic acid, and acetic acid provide an environment with a continuously decreasing pH that explains their successful use in optimized two-step CIEF protocols.  相似文献   

16.
Wu XZ  Zhang LH  Onoda K 《Electrophoresis》2005,26(3):563-570
Carrier ampholyte-free isoelectric focusing (IEF) sample injection (concentration) for capillary electrophoresis (CE) is realized in a single capillary. A short section of porous capillary wall was made near the injection end of a capillary by HF etching. In the etching process, an electric voltage was applied across the etching capillary wall and electric current was monitored. When an electric current through the etching capillary was observed, the capillary wall became porous. The etched part was fixed in a vial, where NaOH solution with a certain concentration was added during the sample injection. The whole capillary was filled with pH 3.0 running buffer. The inlet end vial was filled with protein sample dissolved in the running buffer. An electric voltage was applied across the inlet end vial and etched porous wall. A neutralization reaction occurs at the boundary (interface) of the fronts of H+ and OH-. A pH step or sharp pH gradient exists across the boundary. When positive protein ions electromigrate to the boundary from the sample vial, they are isoelectricelly focused at points corresponding to their pH. After a certain period of concentration, a high voltage is applied across the whole capillary and a conventional CE is followed. An over 100-fold concentration factor has been easily obtained for three model proteins (bovine serum albumin, lysozyme, ribonuclease A). Furthermore, the IEF sample concentration and its dynamics have been visually observed with the whole-column imaging technique. Its merits and remaining problem have been discussed, too.  相似文献   

17.
Recombinant human erythropoietin (rhuEPO) has been extensively used as a pharmaceutical product for treating anemia in the clinic. Glycosylation of rhuEPO was crucial for affecting biological activity, immunogenicity, and pharmacokinetics. Because of the heterogeneity of glycan, the structure of rhuEPO was complex with several isoforms. Characterization of isoforms was important for quality control of rhuEPO. Here, an improved cIEF method has been established and validated. A polarity-reversed focusing step was used by reversing both the polarity of the voltage and the catholyte and anolyte vials. A weak base (100 mM ammonium hydroxide solution) was used as a chemical mobilizer to make the acidic bands mobilize stably to the detection window. Compared with CZE method in European Pharmacopoeia, the numbers of isoforms and their peak area percentage were highly consistent. Better reproducibility and higher resolution have been obtained by the improved cIEF method. Moreover, in improved cIEF method, the isoelectric points (pI) of each isoform can be calculated and used for identification. It was also the first time that the cIEF method was fully validated for rhuEPO analysis according to the International Conference on Harmonization (ICH) guidelines.  相似文献   

18.
The effect of the composition of electrolytes on capillary IEF is assessed for systems with carrier ampholytes covering two pH units and with catholytes of decreased pH, anolytes of increased pH, and both electrode solutions with adjusted pH values. For electrolytes composed of formic acid as anolyte and ammonium hydroxide as catholyte, simulation is demonstrated to provide the expected IEF system in which analytes with pI values within the formed pH gradient are focused and become immobile. Addition of formic acid to the catholyte results in the formation of an isotachophoretic zone structure that migrates toward the cathode. With ammonium hydroxide added to the anolyte migration occurs toward the anode. In the two cases, all carrier components and amphoteric analytes migrate isotachophoretically as cations or anions, respectively. The data reveal that millimolar amounts of a counter ion are sufficient to convert an IEF pattern into an ITP system. With increasing amounts of the added counter ion, the overall length of the migrating zone structure shrinks, the range of the pH gradient changes, and the migration rate increases. The studied examples indicate that systems of this type reported in the literature should be classified as ITP and not IEF. When both electrolytes are titrated, a non-uniform background electrolyte composed of formic acid and ammonium hydroxide is established in which analytes migrate according to local pH and conductivity without forming IEF or ITP zone structures. Simulation data are in qualitative agreement with previously published experimental data.  相似文献   

19.
In an attempt to prepare quasi-isoelectric buffers as BGEs for CE, carrier ampholytes (CAs) (Ampholine, pH 7-9; Servalyt, pH 7-9; Bio-Lyte, pH 8-10 and Pharmalyte, pH 8-10.5) have been subdivided with the Rotofor into 20 fractions, of ca. 0.1 pH unit span, whose composition has been studied by CZE-MS. The results have allowed identifying the number of different molecular mass compounds present in every commercial brand, as well as the number of isoforms (having identical mass, but representing positional isomers) associated with a given M(r) value. Ampholine is composed of 29 species, for a total of 85 different isoforms; Bio-Lyte is made of 43 compounds, for a total of 136 isoforms; Pharmalyte comprises 58 different M(r) chemicals, for a total of 102 isoforms and Servalyt is constituted by 65 species, for a total of 306 compounds (all of these values to be considered as minimum numbers, as detected by the present methodology). Surprisingly, and contrary to theory, a very large proportion (up to 70%) of these species are 'poor carrier ampholytes', in that they are unable to focus and are evenly distributed along the generated pH gradient in the electric field. Paradoxically, the pH gradient is created and sustained by the minority of species (30% for three brands, up to 50% for Pharmalyte) that appear to focus at their pI position into reasonably sharp zones. Even in the narrowest pI fraction, up to 20 different compounds can be detected. It is concluded that very few amines with different useful pK values are utilized for the synthesis and that a new generation of CAs with a more diversified population of amines with proper pK values within the given pH intervals should be sought. Ampholine, the poorest of the commercial brands, appears to be still made with the original synthesis devised by Vesterberg, i.e. by reacting a concoction of oligoamines with alpha,beta-unsaturated acids.  相似文献   

20.
A new set-up was constructed for capillary isoelectric focusing (CIEF) involving a sampling capillary as a bypass fixed to the separation capillary. Sample solutions were subjected to a previously established pH gradient from the sample capillary. Besides performing conventional CIEF, the separation of ampholytic compounds with isoelectric points (p/s) beyond the pH gradient was carried out on this system. This method was termed as pH gradient driven electrophoresis (PGDE) and the basic mathematical expressions were derived to express the dynamic fundamentals. Proteins such as lysozyme, cytochrome C, and pepsin with p/s higher than 10 or below 3 were separated in a pH gradient provided by Pharmalyte (pH 3-10). Finally, this protocol convincingly exhibited its potential in the separation of a solution of chicken egg white.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号