首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electro‐osmotic flow, a significant factor in capillary electrophoretic separations, is very sensitive to small changes in structure and surface roughness of the inner surface of fused silica capillary. Besides a number of negative effects, the electro‐osmotic flow can also have a positive effect on the separation. An example could be fused silica capillaries with homogenous surface roughness along their entire separation length as produced by etching with supercritical water. Different strains of methicillin‐resistant and methicillin‐susceptible Staphylococcus aureus were separated on that type of capillaries. In the present study, fused‐silica capillaries with a gradient of surface roughness were prepared and their basic behavior was studied in capillary zone electrophoresis with UV‐visible detection. First the influence of the electro‐osmotic flow on the peak shape of a marker of electro‐osmotic flow, thiourea, has been discussed. An antifungal agent, hydrophobic amphotericin B, and a protein marker, albumin, have been used as model analytes. A significant narrowing of the detected zones of the examined analytes was achieved in supercritical‐water‐treated capillaries as compared to the electrophoretic separation in smooth capillaries. Minimum detectable amounts of 5 ng/mL amphotericin B and 5 μg/mL albumin were reached with this method.  相似文献   

2.
A novel and simple method that combines an online concentration technique with an enantioseparation technique for capillary electrophoresis—namely, cation‐selective exhaustive injection and sweeping cyclodextrin‐modified micellar electrokinetic chromatography (CSEI‐sweeping CD‐modified MEKC)—realizes the effective enantioseparation of cationic analytes while keeping a significant increase of detection sensitivity. This technique consists of a slight modification of the basic CSEI‐sweeping MEKC. The main idea is to simply add an anionic CD as a chiral selector into the micellar buffer including sodium dodecyl sulfate, but not to change any other buffers in order to preserve the online concentration mechanism. When applied to analysis of the street drug, methamphetamine, the method achieved not only a baseline enantioseparation but also limits of detection (LODs; S/N = 3) of 70–90 pg/mL (ppt) for each isomer. This translates to a more than 10 000‐fold improvement compared to the LODs by the usual injection method. The present technique, which was made from a slight modification of CSEI‐sweeping MEKC, would give an attractive approach that is applicable to almost any analytes for which CSEI‐sweeping MEKC is applicable; all that is required is the selection of an appropriate anionic CD to be added to the micellar buffer.  相似文献   

3.
In this work, a [Cu(mal)(bpy)]?H2O (mal, l ‐(?)‐malic acid; bpy, 4,4′‐bipyridyl) homochiral metal‐organic frameworks (MOFs) was synthesized and used for modifying the inner walls of capillary columns by utilizing amido bonds to form covalent links between the MOFs particles and capillary inner wall. The synthesized [Cu(mal)(bpy)]?H2O and MOFs‐modified capillary column were characterized by X‐ray diffraction, thermogravimetric analysis, particle size distribution analysis, nitrogen absorption characterization, FTIR spectroscopy, SEM, and energy‐dispersive X‐ray spectroscopy (EDX). The MOFs‐modified capillary column was used for the stereoisomer separation of some drugs. The LODs and LOQs of six analytes were 0.1 and 0.25 μg/mL, respectively. The linear range was 0.25–250 μg/mL for ephedrine, 0.25–250 μg/mL for pseudoephedrine, 0.25–180 μg/mL for d ‐penicillamine, 0.25–120 μg/mL for l ‐penicillamine, 0.25–180 μg/mL for d ‐phenylalanine, and 0.25–160 μg/mL for l ‐phenylalanine, all with R2 > 0.999. Finally, the MOFs‐modified capillary column was applied for the analysis of active ingredients in a real sample of the traditional Chinese medicine ephedra.  相似文献   

4.
A rapid liquid phase extraction employing a novel hydrophobic surfactant‐based room temperature ionic liquid (RTIL), tetrabutylphosphonium dioctyl sulfosuccinate ([4C4P][AOT]), coupled with capillary electrophoretic‐UV (CE‐UV) detection is developed for removal and determination of phenolic compounds. The long‐carbon‐chain RTIL used is sparingly soluble in most solvents and can be used to replace volatile organic solvents. This fact, in combination with functional‐surfactant‐anions, is proposed to reduce the interfacial energy of the two immiscible liquid phases, resulting in highly efficient extraction of analytes. Several parameters that influence the extraction efficiencies, such as extraction time, RTIL type, pH value, and ionic strength of aqueous solutions, were investigated. It was found that, under acidic conditions, most of the investigated phenols were extracted from aqueous solution into the RTIL phase within 12 min. Good linearity was observed over the concentration range of 0.1–80.0 μg/mL for all phenols investigated. The precision of this method, expressed as RSD, was determined to be within 3.4–5.3% range. The LODs (S/N = 3) of the method were in the range of 0.047–0.257 μg/mL. The proposed methodology was successfully applied to determination of phenols in real water samples.  相似文献   

5.
An online SPE‐LC method that can determine both anthracyclines and taxanes simultaneously in human serum samples is reported. The entire method of extraction, separation and UV detection was achieved online by column switching between an SPE column (Biotrap 500 (20×4 mm)) and an analytical column (Zorbax XDB C18, 150×4.6 mm, 5 μm) with a 23 min total cycle time. The method is linear (r2>0.998) over the range of 0.5–25 μg/mL. The analytes of interest are retained on the SPE column with good recovery (84–117%), while proteins and other serum components elute to waste. This online clean‐up is much faster (150 s) and less manual than traditional off‐line extraction methods. Using 0.1 mL spiked serum samples, the LOQ was 0.5 μg/mL. Intra‐ and inter‐day precision were acceptable (≤15% RSD) at and above the LOQ. The method was applied to the analysis of serum samples from patients undergoing chemotherapy with these agents.  相似文献   

6.
Surfactant‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection has been developed for the simultaneous preconcentration and determination of lorazepam and nitrazepam in biological fluids. In this study, an ionic surfactant (cetyltrimethyl ammonium bromide) was used as an emulsifier. The predominant parameters affecting extraction efficiency such as the type and volume of extraction solvent, the type and concentration of surfactant, sample pH, and the concentration of salt added to the sample were investigated and opted. Under the optimum conditions (extraction solvent and its volume, 1‐octanol, 70 μL; surfactant and its concentration, 1 mL of ultra‐pure water containing 2 mmol L?1 cetyltrimethyl ammonium bromide; sample pH = 9 and salt content of 10% NaCl w/v), the preconcentration factors were obtained in the range of 202–241 and 246–265 for nitrazepam and lorazepam, respectively. The limits of quantification for both drugs were 5 μg L?1 in water sample and 10 μg L?1 in biological fluids with R2 values higher than 0.993. The suitability of the proposed method was successfully confirmed by the extraction and determination of the target drugs in human urine and plasma samples in the range of microgram per liter.  相似文献   

7.
Solid‐phase extraction (SPE) in tandem with dispersive liquid–liquid microextraction (DLLME) has been developed for the determination of mononitrotoluenes (MNTs) in several aquatic samples using gas chromatography‐flame ionization (GC‐FID) detection system. In the hyphenated SPE‐DLLME, initially MNTs were extracted from a large volume of aqueous samples (100 mL) into a 500‐mg octadecyl silane (C18) sorbent. After the elution of analytes from the sorbent with acetonitrile, the obtained solution was put under the DLLME procedure, so that the extra preconcentration factors could be achieved. The parameters influencing the extraction efficiency such as breakthrough volume, type and volume of the elution solvent (disperser solvent) and extracting solvent, as well as the salt addition, were studied and optimized. The calibration curves were linear in the range of 0.5–500 μg/L and the limit of detection for all analytes was found to be 0.2 μg/L. The relative standard deviations (for 0.75 μg/L of MNTs) without internal standard varied from 2.0 to 6.4% (n=5). The relative recoveries of the well, river and sea water samples, spiked at the concentration level of 0.75 μg/L of the analytes, were in the range of 85–118%.  相似文献   

8.
A novel, simple, and effective ion‐pair cloud‐point extraction coupled with a gradient high‐performance liquid chromatography method was developed for determination of thiamine (vitamin B1), niacinamide (vitamin B3), pyridoxine (vitamin B6), and riboflavin (vitamin B2) in plasma and urine samples. The extraction and separation of vitamins were achieved based on an ion‐pair formation approach between these ionizable analytes and 1‐heptanesulfonic acid sodium salt as an ion‐pairing agent. Influential variables on the ion‐pair cloud‐point extraction efficiency, such as the ion‐pairing agent concentration, ionic strength, pH, volume of Triton X‐100, extraction temperature, and incubation time have been fully evaluated and optimized. Water‐soluble vitamins were successfully extracted by 1‐heptanesulfonic acid sodium salt (0.2% w/v) as ion‐pairing agent with Triton X‐100 (4% w/v) as surfactant phase at 50°C for 10 min. The calibration curves showed good linearity (r2 > 0.9916) and precision in the concentration ranges of 1‐50 μg/mL for thiamine and niacinamide, 5–100 μg/mL for pyridoxine, and 0.5–20 μg/mL for riboflavin. The recoveries were in the range of 78.0–88.0% with relative standard deviations ranging from 6.2 to 8.2%.  相似文献   

9.
In this study, an organic–inorganic hybrid monolithic capillary column was applied and optimized for the determination of cefdinir in plasma, and the electro‐osmotic flow that usually hinders migration in reverse polarity became a driving force. The Sample used for pharmacokinetic research was collected by microdialysis using phosphate buffer (pH 7.4) as perfusate, and a volume of 60 μL fluid was mixed with 140 μL of acetonitrile. By using a silica‐allyldimethyldodecylammonium monolithic column (100 μm inner diameter, 21 cm effective length and 31.2 cm total length), and a mobile phase consisting of phosphate and acetonitrile (pH 4.5, 50:50, v/v), at a voltage of 20 kV, the analytes were successfully separated with the background within 2.5 min. The detection wavelength was 214 nm. The calibration curve showed a good linearity (r2 = 0.9994) over the concentration range of 0.2–50 μg/mL. The proposed method showed good specificity, linearity, sensitivity, precision and recovery, and the introduction of field amplified sample stacking helped to improve the low recovery caused by microdialysis. This method was successfully applied to quantify cefdinir in rat plasma to support a pre‐clinical pharmacokinetic trial.  相似文献   

10.
In this work, we overcame the deficiencies of large volume sample stacking (LVSS) in separating low‐mobility and neutral analytes through combining LVSS with sweeping in CE, and employed this new approach to enrich and separate neutral and anionic analytes simultaneously. This technique was carried out with pressure injection of large‐volume sample followed by EOF as a pump pushing the bulk of low‐conductivity sample matrix out of the outlet of the capillary while analytes were swept by micelles and separated via MEKC without the electrode polarity switching. Careful optimization of the enrichment and separation conditions allowed the enrichment factors (EFs) of peak height and peak area of the analytes to be in the range of 9–33 and 21–35 comparing with the conventional injection mode, respectively. The five analytes were baseline separated in 15 min and the detection limits ranged from 26.5 to 55.8 ng/mL (S/N = 3). The developed method was successfully applied to determine adenine, caffeine, theophylline, reduced L‐glutathione (GSH) and oxidized L‐glutathione (GSSG) in two different teas with recoveries that ranged from 84.4 to 105.2%.  相似文献   

11.
A novel approach based on ionic liquid‐single‐drop microextraction (IL‐SDME) online coupling with capillary electrophoresis (CE) was used to determine a toxic alkaloid – colchicine. The IL‐SDME procedure was optimized by extraction solvent, drop volume controlling, sample volume and pH, extraction time, and ionic strength. Under optimum conditions, enrichment factor was as much as 41‐fold with a relative standard deviation of 2.8% (n=3). Linear range of response was observed from 1 to 100 μg/mL, with detection limit of 0.25 μg/mL and correlation coefficient (R2) of 0.9994. The extraction of colchicine from spiked Lanzhou lily sample was performed and obtaining good result with an average recovery rate of 102.4 and 98.8% at 5 and 50 μg/mL, respectively. Comparing with the previous methods, IL‐SDME‐CE is really a convenient, economical, and environmentally benign way for determining colchicine.  相似文献   

12.
Single drop microextraction (SDME) is a convenient and powerful preconcentration method for CE before injection. By simple combination of sample‐handling sequences without modification of the CE apparatus, a drop of an aqueous acceptor phase covered with a thin organic layer was formed at the tip of a capillary; 10 min SDME of fluorescein and 6‐carboxyfluorescein from a donor phase of pH 1 to an acceptor phase of pH 9 provided 110‐fold enrichments without stirring the donor phase. To improve the concentration effect further, SDME was coupled with an on‐line (after injection) sample preconcentration method, sweeping, in which analytes in a long sample zone are accumulated at the boundary of a pseudostationary phase penetrating into the sample zone. It is thus necessary to inject a sample of much larger volume than that of a drop in typical SDME. A Teflon sleeve over the capillary inlet allowed a large volume drop to be held stably during extraction. By in‐line coupling 10 min SDME and sweeping of a 30 nL sample using a cationic surfactant dodecyltrimethylammonium, enrichment factors of the double preconcentration were increased up to 32 000.  相似文献   

13.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

14.
A novel low‐density solvent‐based vortex‐assisted surfactant‐enhanced‐emulsification liquid–liquid microextraction with the solidification of floating organic droplet method coupled with high‐performance liquid chromatography was developed for the determination of 3,5,6‐trichloro‐2‐pyridinol, phoxim and chlorpyrifos‐methyl in water samples. In this method, the addition of a surfactant could enhance the speed of the mass transfer from the sample solution into the extraction solvent. The extraction solvent could be dispersed into the aqueous by the vortex process. The main parameters affecting the extraction efficiency were investigated and the optimum conditions were established as follows: 80 μL 1‐undecanol as extraction solvent, 0.2 mmol/L of Triton X‐114 selected as the surfactant, the vortex time was fixed at 60 s with the vortex agitator set at 3000 rpm, the concentration of acetic acid in sample solution was 0.4% v/v and 1.0 g addition of NaCl. Under the optimum conditions, the enrichment factors were from 172 to 186 for the three analytes. The linear ranges were from 0.5 to 500 μg/L with a coefficient of determination (r2) of between 0.9991 and 0.9995. Limits of detections were varied between 0.05 and 0.12 μg/L. The relative standard deviations (n = 6) ranged from 0.26 to 2.62%.  相似文献   

15.
A solid‐phase extraction (SPE) method was developed to extract 14 pesticides simultaneously from environment samples using cigarette filter as the sorbent before gas chromatography‐mass spectrometry (GC‐MS) analysis. Parameters influencing the extraction efficiency, such as the sample loading flow rate, eluent and elution volume, were optimized. The optimum sample loading rate was 3 mL/min, and the retained compounds were eluted with 6 mL of eluent at 1 mL/min under vacuum. Good linearity was obtained for all the 14 pesticides (r2>0.99) from 0.1 to 20 μg/L for water and from 2 to 400 μg/kg for soil samples. The detection limits (signal‐to‐noise=3) of the proposed method ranged from 0.01 to 0.20 μg/L for water samples and from 0.42 to 6.95 μg/kg for soil samples. The developed method was successfully applied for determination of the analytes in real environmental samples, and the mean recoveries ranged from 76.4 to 103.7% for water samples and from 79.9 to 105.3% for soil samples with the precisions (relative standard deviation) between 2.0 and 13.6%.  相似文献   

16.
A recent guideline recommends therapeutic drug monitoring for risperidone, paliperidone and olanzapine, which are frequently used second‐generation antipsychotics. We developed a simple high‐performance liquid chromatography–tandem mass spectrometry coupled with an online solid‐phase extraction method that can be used to measure risperidone, paliperidone and olanzapine using small (40 μL) samples. The analytes were extracted from serum samples automatically pre‐concentrated and purified by C8 (5 μm, 2.1 × 30 mm) solid‐phase extraction cartridges, then chromatographed on an Xbidge™ C18 column (3.5 μm, 100 × 2.1 mm) thermostatted at 30°C with a mobile phase consisting of 70% acetonitrile and 30% ammonium hydroxide 1% solution at an isocratic flow rate of 0.3 mL/min, and detected with tandem mass spectrometry. The assay was validated in the concentration range from 2.5 to 160 ng/mL. Intra‐ and inter‐day precision for all analytes was between 1.1 and 8.2%; method accuracy was between 6.6 and 7.6%. The risperidone and paliperidone assay was compared with a high‐performance liquid chromatography‐ultraviolet assay currently used in our hospital for risperidone and paliperidone therapeutic drug monitoring, and the results of weighted Deming regression analysis showed good agreement. For the olanzapine assay, we compared 20 samples in separate re‐assays on different days; all the relative errors were within the 20% recommended limit.  相似文献   

17.
In this paper, the simultaneous separation of several polyphenols such as (+)‐catechin, (–)‐epicatechin, (–)‐epigallocatechin, theophylline, caffeine in green and black teas by capillary electrochromatography (CEC) was developed. Several experimental parameters such as stationary phase type, mobile phase composition, buffer and pH, inner diameter of the columns, sample injection, were evaluated to obtain the complete separation of the analysed compounds. Baseline resolution of the studied polyphenols was achieved within 30 min by using a capillary column (id 100 μm) packed with bidentate C18 particles for 24.5 cm and a mobile phase composed of 5 mM ammonium acetate buffer pH 4 with H2O/ACN (80:20, v/v). The applied voltage and the temperature were set at 30 kV and 20°C. Precision, detection and quantification limits, linearity, and accuracy were investigated. A good linearity (R2 > 0.9992) was achieved over a concentration working range of 2–100 μg/mL for all the analytes. LOD and LOQ were 1 and 2 μg/mL, respectively, for all studied compounds. The CEC method was applied to the analysis of those polyphenols in green and black tea samples after an extraction procedure. Good recovery data from accuracy studies ranged between 90% and 112% for all analytes.  相似文献   

18.
Cheng YC  Wang CC  Chen YL  Wu SM 《Electrophoresis》2012,33(9-10):1443-1448
This study proposes a capillary electrophoresis method incorporating large volume sample stacking, EOF and sweeping for detection of common preservatives used in cosmetic products. The method was developed using chemometric experimental design (fractional factorial design and central composite design) to determine multiple separation variables by efficient steps. The samples were loaded by hydrodynamic injection (10 psi, 90 s), and separated by phosphate buffer (50 mM, pH 3) containing 30% methanol and 80 mM SDS at -20 kV. During method validation, calibration curves were found to be linear over a range of 5-100 μg/mL for butyl paraben and isobutyl paraben; 0.05-10 μg/mL for ethyl paraben; 0.2-50 μg/mL for dehydroacetic acid; 0.5-70 μg/mL for methyl paraben; 5-350 μg/mL for sorbic acid; 0.02-450 μg/mL for p-hydroxybenzoic acid and 0.05-10 μg/mL for salicylic acid and benzoic acid. The analytes were analysed simultaneously and their detection limits (S/N = 3) were down to 0.005-2 μg/mL. The analysis method was successfully used for detection of preservatives used in commercial cosmetics.  相似文献   

19.
Fat‐soluble vitamins play a pivotal role in the progression of atherosclerosis and the development of cardiovascular disease. Therefore, plasma monitoring of their concentrations may be useful in the diagnosis of these disorders as well as in the process of treatment. The study aimed to develop and validate an HPLC–MS/MS method for determination of retinol, α‐tocopherol, 25‐hydroxyvitamin D2 and 25‐hydroxyvitamin D3 in plasma of patients with cardiovascular disease. The analytes were separated on an HPLC Kinetex F5 column via gradient elution with water and methanol, both containing 0.1% (v/v) formic acid. Detection of the analytes was performed on a triple‐quadrupole MS with multiple reaction monitoring via electrospray ionization. The analytes were isolated from plasma samples with liquid–liquid extraction using hexane. Linearity of the analyte calibration curves was confirmed in the ranges 0.02–2 μg/mL for retinol, 0.5–20 μg/mL for α‐tocopherol, 5–100 ng/mL for 25‐hydroxyvitamin D2 and 2–100 ng/mL for 25‐hydroxyvitamin D3. Intra‐ and inter‐assay precision and accuracy of the method were satisfactory. Short‐ and long‐term stabilities of the analytes were determined. The HPLC‐MS/MS method was applied for the determination of the above fat‐soluble vitamin concentrations in patient plasma as potential markers of the cardiovascular disease progression.  相似文献   

20.
An indirect simple and rapid cloud point extraction is proposed for separation and preconcentration of sulfadiazine and its determination by flow injection‐flame atomic absorption spectroscopy (FI‐FAAS). The sulfadiazine from 35 mL of solution was readily converted to silver sulfadiazine upon addition of silver nitrate (9.7 × 10‐5 mol/L). Then, Triton X‐114 a non ionic surfactant was added and the solution was heated to 60 °C. At this stage, two separate phases was formed and silver sulfadiazine enters the surfactant rich phase of non‐ionic micelles of Triton X‐114. The surfactant‐rich phase (~50 μL) was then separated and diluted to 300 μL with acidic methanol. The concentration of silver in the surfactant‐rich phase which is proportional to the concentration of sulfadiazine in sample solution was determined by FI‐FAAS. The parameters affecting extraction and separation were optimized. Under the optimum conditions (i.e. pH 2‐10, silver concentration (9.7 × 10 ‐5 mol/L), Triton X‐114 (0.075% v/v) and temperature 60 °C) a preconcentration factor of 117 and a relative standard deviation of 4.9% at 37 μg L‐1 of sulfadiazine was obtained. The method was successfully applied to analysis of milk, urine and tablet samples and accuracy was determined by recovery experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号