首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this study, a highly sensitive and selective sample pretreatment procedure using molecularly imprinted silica nanoparticles was developed for the extraction and determination of quercetin in red wine samples coupled with high‐performance liquid chromatography with ultraviolet detection. The imprinted silica nanoparticles were prepared in the presence of N‐acryoyl‐l ‐aspartic acid (functional monomer), quercetin (template), azobisisobutyronitrile (initiator) and methylene bisacrylamide (cross‐linker) and methanol/water (porogen) via surface‐initiated reversible addition‐fragmentation chain transfer polymerization. Surface characterization was performed and several imprinting parameters were investigated, and the results indicated that adsorption of quercetin on the imprinted silica nanoparticles followed a pseudo‐first‐order adsorption isotherm with a maximum adsorption capacity at 26.4 mg/g within 60 min. The imprinted silica nanoparticles also showed satisfactory selectivity towards quercetin as compared with its structural analogues. Moreover, the imprinted nanoparticles preserved their recognition ability even after five adsorption–desorption cycles. Meanwhile, the nanoparticles were successfully applied to selective extraction of quercetin from red wine with a high recovery (99.7–100.4%). The limit of detection was calculated to be 0.058 μg/mL with a correlation coefficient 0.9996 in the range of 0.2–50 μg/mL. As a result, the developed selective extraction method using molecular imprinting technology simplifies the sample pretreatment procedure before determination of quercetin in real samples.  相似文献   

2.
A novel l‐ phenylalanine molecularly imprinted solid‐phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion‐pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid‐phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l‐ phenylalanine. Under the optimized conditions of the procedure, an analytical method for l‐ phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse‐phase silica gel, the obtained molecularly imprinted polymer as an solid‐phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L?1) for the isolation of l‐ phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion‐pair dummy template imprinting is effective for preparing selective solid‐phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples.  相似文献   

3.
We present a facile strategy to prepare the molecularly imprinted polymers layer on the surface of Fe3O4 nanoparticles with core‐shell structure via sol–gel condensation for recognition and enrichment of triclosan. The Fe3O4 nanoparticles were first synthesized by a solvothermal method. Then, template triclosan was self‐assembled with the functional monomer 3‐aminopropyltriethoxysilane on the silica‐coated Fe3O4 nanoparticles in the presence of ethanol and water. Finally, the molecularly imprinted polymers were formed on the surface of silica‐coated Fe3O4 nanoparticles to obtain the product. The morphology, magnetic susceptibility, adsorption, and recognition property of magnetic molecularly imprinted polymers were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffractometry, vibrating sample magnetometry, and re‐binding experiments. The magnetic molecularly imprinted polymers showed binding sites with good accessibility, fast adsorption rate, and high adsorption capacity (218.34 μg/g) to triclosan. The selectivity of magnetic molecularly imprinted polymers was evaluated by the rebinding capability of triclosan and two other structural analogues (phenol and p‐chlorophenol) in a mixed solution and good selectivity with an imprinting factor of 2.46 was obtained. The application of triclosan removal in environmental samples was demonstrated.  相似文献   

4.
A novel magnetic molecularly imprinted polymer adsorbing material was successfully synthesized to detect ribavirin in animal feedstuff. Molecularly imprinted polymer was prepared through surface polymerization by using ribavirin as template molecule, methyl methacrylate, and γ‐methacryloxypropyl trimethoxy silane functionalized magnetic mesoporous silica as bifunctional monomers, and ethylene diglycidyl ether as crosslinking agent. The prepared magnetic molecularly imprinted polymer was characterized by scanning electron microscopy and infrared spectroscopy. Static and dynamic adsorption experiments and selective adsorption analysis were performed to evaluate the adsorption and selectivity of magnetic molecularly imprinted polymer. Different experiments were conducted to optimize the magnetic solid‐phase extraction conditions. Under optimal experimental conditions, a magnetic molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography method was successfully developed for ribavirin detection. The established method achieved a satisfactory linear range of 0.20–50 mg/L (R> 0.99) and a low detection limit (0.081 mg/kg). An average recovery of 92–105% with relative standard deviation of <6.5% was obtained upon the application of the developed method to detect ribavirin in real feedstuff samples. Thus, established method can be used for the rapid and simple separation and detection of added ribavirin in feedstuff.  相似文献   

5.
Atrazine contamination of water is of considerable concern because of the potential hazard to human health. In this study, a magnetic molecularly imprinted polymer for atrazine was prepared by the surface‐imprinting technique using Fe3O4 as the core, mesoporous silica as the carrier, atrazine as the template, and itaconic acid as the functional monomer. The magnetic molecularly imprinted polymer was characterized by Fourier‐transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, and vibration‐sample magnetometry. The binding properties of the magnetic molecularly imprinted polymer toward atrazine were investigated by adsorption isotherms, kinetics, and competitive adsorption. It was found that the adsorption equilibrium was achieved within 2 h, the maximum adsorption capacity of atrazine was 8.8 μmol/g, and the adsorption process could be well described by the Langmuir isotherm model and pseudo‐second‐order kinetic model. The magnetic molecularly imprinted polymer exhibited good adsorption selectivity for atrazine with respect to structural analogues, such as cyanazine, simetryne, and prometryn. The reusability of the magnetic molecularly imprinted polymer was demonstrated for at least five repeated cycles without a significant decrease in adsorption capacity. These results suggested that the magnetic molecularly imprinted polymer could be used as an efficient material for the selective adsorption and removal of atrazine from water samples.  相似文献   

6.
Novel thermosensitive molecularly imprinted polymers were successfully prepared using the epitope imprinting approach in the presence of the mimic template phenylphosphonic acid, the functional monomer vinylphosphonic acid‐Ti4+, the temperature‐sensitive monomer N‐isopropylacrylamide and the crosslinker N,N′‐methylenebisacrylamide. The ratio of the template/thermosensitive monomers/crosslinker was optimized, and when the ratio was 2:2:1, the prepared thermosensitive molecularly imprinted polymers had the highest imprinting factor. The synthetic thermosensitive molecularly imprinted polymers were characterized by Fourier transform infrared spectroscopy to reveal the combination and elution processes of the template. Then, the adsorption capacity and thermosensitivity was measured. When the temperature was 28°C, the imprinting factor was the highest. The selectivity and adsorption capacity of the thermosensitive molecularly imprinted polymers for phosphotyrosine peptides from a mixture of three tailor‐made peptides were measured by high‐performance liquid chromatography. The results showed that the thermosensitive molecularly imprinted polymers have good selectivity for phosphotyrosine peptides. Finally, the imprinted hydrogels were applied to specifically adsorb phosphotyrosine peptides from a sample mixture containing phosphotyrosine and a tryptic digest of β‐casein, which demonstrated high selectivity. After four rebinding cycles, 78.9% adsorption efficiency was still retained.  相似文献   

7.
A silica‐based surface magnetic molecularly imprinted polymer for the selective recognition of parabens was prepared using a facile and general method that combined atom‐transfer radical polymerization with surface imprinting technique. The prepared magnetic molecularly imprinted polymer was characterized by transmission electron microscopy, Fourier transform infrared spectrometry and physical property measurement. The isothermal adsorption experiment and kinetics adsorption experiment investigated the adsorption property of magnetic molecularly imprinted polymer to template molecule. The four parabens including methylparaben, ethylparaben, propylparaben, and butylparaben were used to assess the rebinding selectivity. An extraction method, which used magnetic molecularly imprinted polymer as adsorbents coupled with high‐performance liquid chromatography for the determination of the four parabens in fruit juice samples was developed. Under the optimal conditions, the limits of detections of the four parabens were 0.028, 0.026, 0.021, and 0.026 mg/L, respectively. The precision expressed as relative standard deviation ranging from 2.6 to 8.9% was obtained. In all three fortified levels, recoveries of parabens were in the range of 72.5–89.4%. The proposed method has been applied to different fruit juice samples including orange juice, grape juice, apple juice and peach juice, and satisfactory results were obtained.  相似文献   

8.
A dual responsive molecularly imprinted polymer sensitive to both photonic and magnetic stimuli was successfully prepared for the detection of four sulfonamides in aqueous media. The photoresponsive magnetic molecularly imprinted polymer was prepared by surface imprinting polymerization using superparamagnetic Fe3O4 nanoparticles functionalized with a silica layer as a support, water‐soluble 4‐[(4‐methacryloyloxy)phenylazo]benzenesulfonic acid as the functional monomer, and sulfadiazine as the template. The magnetic molecularly imprinted polymers showed specific affinity to sulfadiazine and its structural analogs in aqueous media. Upon alternate irradiation at 365 and 440 nm, the quantitative bind and release of the four sulfonamides by magnetic molecularly imprinted polymers occurred. Furthermore, the prepared magnetic molecularly imprinted polymers were used as solid‐phase extraction material selectively extracted the four sulfonamides from water samples with good recoveries. Thus, a simple, convenient, and reliable detection method for sulfonamides in the environment based on responsive magnetic molecularly imprinted polymers was successfully established.  相似文献   

9.
The dummy molecularly imprinted polymers were prepared by Pickering emulsion polymerization. 4,4′‐(1‐Phenylethylidene) bisphenol was selected as the dummy template to avoid the leakage of the target bisphenols. The microsphere particles were characterized by scanning electron microscopy and nitrogen adsorption–desorption measurements, demonstrating that the regular‐shaped and medium‐sized particles (40–70 μm) were obtained with a specific surface area of 355.759 m2/g and a total pore volume of 0.561 cm3/g. The molecular imprinting properties of the particles were evaluated by static adsorption and chromatographic evaluation experiments. The association constant and maximum adsorption amount of bisphenol A were 0.115 mmol/L and 3.327 μmol/g using Scatchard analysis. The microsphere particles were then used as a solid‐phase extraction sorbent for selective extraction of seven bisphenols. The method of dummy molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and diode array detection was successfully established for the extraction and determination of seven bisphenols from environmental sediment samples with method detection limits of 0.6–1.1 ng/g. Good recoveries (75.5–105.2%) for sediment samples at two spiking levels (500 and 250 ng/g) and reproducibility (RSDs < 7.7%, n = 3) were obtained.  相似文献   

10.
A highly sensitive and convenient electrochemical sensor, based on surface molecularly imprinted polymers and multiwalled carbon nanotubes, was successfully developed to detect chlorpyrifos in real samples. In order to solve the problems like uneven shapes, poor size accessibility, and low imprinting capacity, the layer of the molecularly imprinted polymer was prepared on the surface of silica nanospheres. Moreover, the doping of multiwalled carbon nanotubes greatly improved the electrical properties of developed sensor. Under the optimal conductions, the electrochemical response of the sensor is linearly proportional to the concentration of chlorpyrifos in the range of 5.0 × 10?12‐5.0 × 10?8 mol/L with a low detection limit of 8.1 × 10?13 mol/L. The prepared sensor exhibited multiple advantages such as low cost, simple preparation, convenient use, excellent selectivity, and good reproducibility. Finally, the prepared sensor was successfully used to detect chlorpyrifos in vegetable and fruit.  相似文献   

11.
The selective extraction of baicalin is important to its quality control especially when the matrices are complicated. In this work, a novel molecularly imprinted polymer was prepared for the selective extraction of baicalin in herbs. The molecularly imprinted polymer was synthesized by the copolymerization of 4‐vinyl pyridine and ethylene glycol dimethacrylate in the presence of baicalin by a precipitation polymerization method. After the optimization of parameters for molecularly imprinted polymer preparation, including the functional monomer, porogen, sampling solvent, and washing solvent, good selectivity was obtained, with an imprinting factor of about 4, which is much better than that achieved by the bulk‐polymerization method. The performances of the prepared molecularly imprinted polymers were systematically investigated, including adsorption kinetics, isotherm experiment, and Scatchard analysis. On the basis of the good adsorptive capability of the prepared molecularly imprinted polymer, it was also applied for the pretreatment of baicalin in Scutellaria baicalensis Georgi. The result showed that most of the matrices were removed and baicalin was selectively enriched.  相似文献   

12.
Molecular imprinting of cis‐diol functionalized agents via boronate affinity interaction has been usually performed using nanoparticles as a support which cannot be utilized as a stationary phase in continuous microcolumn applications. In this study, monodisperse‐porous, spherical silica particles in the micron‐size range, with bimodal pore diameter distribution were selected as a new support for the synthesis of a molecularly imprinted boronate affinity sorbent, using a cis‐diol functionalized agent as the template. A specific surface area of 158 m2/g was achieved with the imprinted sorbent by using monodisperse‐porous silica microspheres containing both mesoporous and macroporous compartments as the support. High porosity originating from the macroporous compartment and sufficiently high particle size provided good column permeability to the imprinted sorbent in microcolumn applications. The mesoporous compartment provided a large surface area for the parking of imprinted molecules while the macroporous compartment facilitated the intraparticular diffusion of imprinted target within the microsphere interior. A microfluidic boronate affinity system was first constructed by using molecularly imprinted polymeric shell coated monodisperse‐porous silica microspheres as a stationary phase. The synthetic route for the imprinting process, the reversible adsorption/ desorption behavior of selected target and the selectivity of imprinted sorbent in both batch and microfluidic boronate affinity chromatography systems are reported.  相似文献   

13.
Magnetic molecularly imprinted polymer nanoparticles for di‐(2‐ethylhexyl) phthalate were synthesized by surface imprinting technology with a sol–gel process and used for the selective and rapid adsorption and removal of di‐(2‐ethylhexyl) phthalate from aqueous solution. The prepared magnetic molecularly imprinted polymer nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and vibrating sample magnetometry. The adsorption of di‐(2‐ethylhexyl) phthalate onto the magnetic molecularly imprinted polymer was spontaneous and endothermic. The adsorption equilibrium was achieved within 1 h, the maximum adsorption capacity was 30.7 mg/g, and the adsorption process could be well described by Langmuir isotherm model and pseudo‐second‐order kinetic model. The magnetic molecularly imprinted polymer displayed a good adsorption selectivity for di‐(2‐ethylhexyl) phthalate with respect to dibutyl phthalate and di‐n‐octyl phthalate. The reusability of magnetic molecularly imprinted polymer was demonstrated for at least eight repeated cycles without significant loss in adsorption capacity. The adsorption efficiencies of the magnetic molecularly imprinted polymer toward di‐(2‐ethylhexyl) phthalate in real water samples were in the range of 98–100%. These results indicated that the prepared adsorbent could be used as an efficient and cost‐effective material for the removal of di‐(2‐ethylhexyl) phthalate from environmental water samples.  相似文献   

14.
With the combined surface imprinting technique and immobilized template strategy, molecularly imprinted magnetic nanoparticles were successfully prepared and coupled with high‐performance liquid chromatography to selectively separate and determine gallic acid from the pomegranate rind. On the surface of carboxyl‐functionalized magnetic nanospheres, thin imprinting shells were formed using dopamine as monomer and crosslinker. The characteristics, polymerization conditions, and adsorption performances of the resultant nanomaterials were investigated in detail. In addition of good crystallinity, satisfactory magnetism, and uniform morphology of the obtained polymers, they had rapid binding kinetics, high adsorption capacity, and favorable reusability. In the mixed solution of four hydroxybenzoic acids, the prepared nanomaterials have an excellent selectivity to gallic acid with an imprinting factor of as high as 17.5. Therefore, the polymers have great potentials in specific extraction and enrichment of gallic acid from the complex natural resources.  相似文献   

15.
The surface imprinting technique has been developed to overcome the mass‐transfer difficulty, but the utilization ratio of template molecules in the imprinting procedure still remains a challengeable task to be improved. In this work, specifically designed surface‐imprinted microspheres were prepared by a template‐oriented method for enantioseparation of amlodipine besylate. Submicron mesoporous silica microspheres were surface‐modified with double bonds, followed by polymerizing methacrylic acid to generate carboxyl modified mesoporous silica microspheres (PMAA@SiO2). Afterwards, PMAA@SiO2 was densely adsorbed with (S )‐amlodipine molecules to immobilize template molecules through multiple hydrogen bonding interactions. Then surface molecular imprinting was carried out by cross‐linking the carboxyl group of PMAA@SiO2 with ethylene glycol diglycidyl ether. The surface‐imprinted microspheres showed fast binding kinetics of only 20 min for equilibrium adsorption, and the saturation adsorption capacity reached 137 mg/g. The imprinted materials displayed appreciable chiral separation ability when used as column chromatography for enantioseparation of amlodipine from amlodipine besylate, and the enantiomeric excess of (S )‐amlodipine reached 13.8% with only 2.3 cm column length by no extra chiral additives. Besides, the imprinted materials exhibited excellent reusability, and this allows the potential application for amplification production of amlodipine enantiomer.  相似文献   

16.
In this research, a surface imprinting strategy has been adopted in protein imprinting. Bovine hemoglobin surface-imprinted polystyrene (PS) nanoparticles with magnetic susceptibility have been synthesized through multistage core-shell polymerization system using 3-aminophenylboronic acid (APBA) as functional and cross-linking monomers. Superparamagnetic molecularly imprinted polystyrene nanospheres with poly(APBA) thin films have been synthesized and used for the first time for protein molecular imprinting in an aqueous solution. The magnetic susceptibility is imparted through the successful encapsulation of Fe3O4 nanoparticles. The morphology, adsorption, and recognition properties of superparamagnetic molecularly imprinted polymers (MIPs) have been investigated using transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Rebinding experimental results show that poly(APBA) MIPs-coated superparamagnetic PS nanoparticles have high adsorption capacity for template protein bovine hemoglobin and comparatively low nonspecific adsorption. The imprinted superparamagnetic nanoparticles could easily reach the adsorption equilibrium and achieve magnetic separation in an external magnetic field, thus avoiding some problems of the bulk polymer.  相似文献   

17.
Bianjing Si  Jie Zhou 《中国化学》2011,29(11):2487-2494
Based on a molecularly imprinted organic‐silica hybrid‐based stir bar, a pre‐treatment methodology was developed for enrichment of nicosulfuron in aqueous samples. The molecularly imprinted organic‐silica hybrid‐based coating on the outer surface of a glass stir bar was prepared by in‐situ polymerization using nicosulfuron as a template molecule, α‐methacrylic acid as a functional monomer, methacryloxypropytrimethoxysilane as a cross‐linker in the mixture of acetonitrile and trichloromethane (V/V, 7.5:1). To achieve the selective extraction of the target analyte from aqueous samples, several main parameters, including extraction time, pH value and contents of inorganic salt in the sample matrix were investigated. Evidence was also presented by the scanning electronic microscopic images of the imprinted and non‐imprinted stir bars. Then, the extraction efficiency of the stir bar was tested with separate experiments and competitive sorption experiments. These results showed that using six sulfonylureas as substrates the molecularly imprinted organic‐silica hybrid‐based stir bar gave high selectivity for the template, nicosulfuron compared to the non‐imprinted organic‐silica hybrid‐based stir bar. This sorption extraction was coupled to liquid chromatography ultraviolet detection allowing the determination of nicosulfuron from tap water. The method showed good recoveries and precision, 96.0% (RSD 2.7%, n=3) for tap water spiked with 0.125 nmol (25.00 mL sample), suggesting that the stir bar can be successfully applied to the pre‐concentration of nicosulfuron in real aqueous samples.  相似文献   

18.
Photoirradiation surface molecularly imprinted polymers for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin were synthesized using functionalized silica as a matrix, 4‐(phenyldiazenyl)phenol as a light‐sensitive monomer, and 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin as a template. Fourier transform infrared spectroscopy results indicated that 4‐(phenyldiazenyl)phenol was grafted onto the surface of functionalized silica. The obtained imprinted polymers exhibited specific recognition toward 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin. Equilibrium binding experiments showed that the photoirradiation surface molecularly imprinted polymers obtained the maximum adsorption amount of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin at 20.5 mg/g. In binding kinetic experiments, the adsorption reached saturation within 2 h with binding capacity of 72.8%. The experimental results showed that the adsorption capacity and selectivity of imprinted polymers were effective for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin, indicating that imprinted polymers could be used to isolate 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin from a conversion mixture containing β‐cyclodextrin and maltose. The results showed that the imprinted polymers prepared by this method were very promising for the selective separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin.  相似文献   

19.
A multitemplate molecularly imprinted polymer was synthesized using fragments similar to gonyautoxins 1 and 4 including 2,4,6-triaminopyrimidine, 4-hydroxy-2-butanone, and imidazole as dummy templates by bulk polymerization. Scanning electron microscopy and infrared spectroscopy showed a porous structure and the formation of organic groups in the imprinting process of the polymer. One millilitre of 0.1?mol?L?1 acetic acid and 1?mL of 95% methanol were the optimized washing and eluting solutions during the molecularly imprinted solid-phase extraction. The adsorption capacity of the multitemplate molecularly imprinted polymer was lower than for the monotemplate molecularly imprinted polymer prepared in a previous study in seawater in which Alexandrium tamarense and Alexandrium minutum were cultivated. This result may due to the inappropriate combination of the dummy template fragments in the synthesis resulting in the unfitness of the imprinting sites for gonyautoxins 1 and 4. In general, it is inappropriate to use fragments with the similar parts to the analyte as the dummy templates. However, this work indicated the optimal molecularly imprinted polymer for the selective extraction of gonyautoxins 1 and 4.  相似文献   

20.
Estrone molecularly imprinted polymers were synthesized through the self‐polymerization of dopamine on the surface of silica gels, which had the characteristics of mild polymerization conditions, simple reaction procedure and good specific recognition ability for estrone. The estrone molecularly imprinted polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis and nitrogen adsorption–desorption tests. The characterization confirmed that the imprinted polymers were successfully grafted on the surface of silica gels. Through investigating the adsorption performance, the prepared estrone molecularly imprinted polymers exhibited high adsorption capacity, fast mass transfer, as well as excellent selectivity toward estrone. The estrone molecularly imprinted polymers as the solid‐phase extraction adsorbent coupled with high‐performance liquid chromatography was developed to determine estrone from the milk samples. The developed estrone molecularly imprinted polymer solid‐phase extraction with high‐performance liquid chromatography method exhibited satisfactory specificity, precision, accuracy and good linearity relationship in the range of 0.2–20 μg/mL. The developed method is simple, fast, effective and high specificity method and it provides a new method to detect the residues of estrone in animal foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号