首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Packed capillary column solvating gas chromatography (SGC) and open tubular column gas chromatography (GC) were compared with respect to their potentials for fast separations. A recently introduced "universal" peak capacity equation was used to compare the performance of these two methods. The effects of various factors on peak capacity were investigated. Results demonstrate that retention factor and column efficiency are the main factors affecting peak capacity for fast separations. Packed columns produce both high retention factors and high selectivities. While high efficiencies and high peak capacities can be demonstrated by both techniques, open tubular column GC can surpass packed capillary column SGC in both measurements, except for the case of the analysis of simple mixtures in short analysis times, where retention factor and selectivity become important. Practical aspects such as pressure drop and sample capacity are compared for SGC and open tubular column GC. It was found that packed column SGC demonstrates higher sample capacities, but requires much higher column inlet pressures than open tubular column GC. A variety of mobile phases can be used for packed column SGC, which can provide high solvating power for large and polar compounds.  相似文献   

2.
Summary Packed columns containing microparticles provide high column efficiency per unit time and strong retention characteristics compared with open tubular columns, and they are favored for fast separations. Nonporous particles eliminate the contribution of solute mass transfer resistance in the intraparticle void volume characteristic of porous particles, and they should be more suitable for fast separations. In this paper, the evaluation of nonporous silica particles of sizes ranging from 5 to 25 μm in packed capillary columns for fast supercritical fluid chromatography (SFC) using neat CO2 is reported. These particles were first deactivated using polymethyl-hydrosiloxanes and then encapsulated with a methylphenylpolysiloxane stationary phase. The retention factors, column efficiencies, column efficiencies per unit time, separation resolution, and separation resolution per unit time for fast SFC were determined for various length capillaries packed with various sizes of polymerencapsulated nonporous particles. It was found that 15 μm nonporous particles provided the highest column efficiency per unit time and resolution per unit time for fast packed capillary SFC. Under certain conditions, separations were completed in less than 1 min. Several thermally labile silylation reagent samples were separated in times less than 5 min. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

3.
PLOT柱是用于永久性气体,低碳烃和挥发性化合物色谱分析的最有效的工具,经常用于替代经典填充柱,对多孔层开管毛细管柱(PLOT)吸附色谱的分离机理、PLOT柱制备方法和各类吸附剂的色谱特性及其特定应用进行了综述。  相似文献   

4.
Porous monoliths are well‐known stationary phases in high‐performance liquid chromatography and capillary electrochromatography. Contrastingly, their use in other types of separation methods such as gas or supercritical fluid chromatography is limited and scarce. In particular, very few studies address the use of monolithic columns in supercritical fluid chromatography. These are limited to silica‐based monoliths and will be covered in this review together with an underlying reason for this trend. The application of monoliths in gas chromatography has received much more attention and is well documented in two reviews by Svec and Kurganov published in 2008 and 2013, respectively. The most recent studies, covered in this review, build on the previous findings and on further understanding of the influence of preparation conditions on porous properties and chromatographic performance of poly(styrene‐co‐divinylbenzene), polymethacrylate, and silica‐based monolithic columns while expanding to polymer‐based monoliths with incorporated metal organic frameworks and to vinylized hybrid silica monoliths. In addition, the potential application of porous layer open tubular monolithic columns in low‐pressure gas chromatography will be addressed.  相似文献   

5.
The easy shrinkage and swelling of polymer monolithic column when exposed to mobile phase with different polarity is a problem that cannot be ignored. To overcome this drawback, a convenient aqueous two‐phase polymerization approach was used to prepare poly (polyethylene glycol diacrylate, PEGDA) monolithic porous layer open tubular (mono‐PLOT) columns (150 μm). The poly(PEGDA) mono‐PLOT column with homogeneous polymer porous layer was synthesized successfully. A maximum plate number of 41,500 plates per meter for allyl thiourea was obtained under a velocity of 1.8 mm/s. Several kinds of polar molecule were separated on the proposed mono‐PLOT column and a typical hydrophilic interaction retention mechanism was observed. High speed separation of benzoic acids was also carried out, baseline separation of five benzoic acids was successfully achieved within 5 min with a 70 cm mono‐PLOT column at 50°C. Furthermore, the resulting PLOT column was also successfully applied to separate standard analytes of three DNA oxidative damage products and RNA‐modified nucleosides and four chlorophenols. At last, the column could separate alcohols, alkanes, and aromatic isomers via GC. It had more than 20,000 plates per meter for butanol – higher than commercial coatings open tubular columns.  相似文献   

6.
In this work a fast gas chromatography set‐up with on‐column injection was optimized and evaluated with a model mixture of C8–C28 n‐alkanes. Usual injection volumes when using narrow‐bore (e. g., 0.1 mm i.d.) analytical columns are ca. 0.1 μL. The presented configuration allows introduction of 10–30‐fold larger sample volumes without any distortion of peak shapes. In the set‐up a normal‐bore retention gap (1 m×0.32 mm i. d.) was coupled to a narrow‐bore (4.8 m×0.1 mm i. d.×0.4 μm film thickness) analytical column using a low dead volume column connector. The effects of the experimental conditions such as inlet pressure, sample volume, initial injection temperature, and oven temperature on a peak focusing are discussed. H‐u curves for helium and hydrogen are used to compare their suitability for high speed gas chromatography and to show the dependence of separation efficiency on the carrier gas velocity at high inlet pressures. In the fast gas chromatography system a baseline separation of C10–C28 n‐alkanes was achieved in less than 3 minutes.  相似文献   

7.
N. Wu  R. Yee  M. L. Lee 《Chromatographia》2000,53(3-4):197-200
Summary Fast separations of perfluorinated polyethers and polymethylsiloxanes that are composed of 50–80 oligomers were demonstrated in packed capillary column supercritical fluid chromatography (SFC) using a carbon dioxide mobile phase. Separations were accomplished within 10 min using a 13 cm×250 μm i.d. column packed with 2 μm porous octadecyl bonded silica (ODS) particles. Effects of particle diameter of the packing material and pressure programming on separation were investigated, and packed column SFC was compared with open tubular column SFC. Results show that as the particle diameter was decreased from 5 to 3 to 2 μm and the column length was reduced from 85 to 43 to 13 cm, the separation time could be reduced from 70 to 20 to 10 min while still maintaining similar separation (resolution). Short columns packed with small porous particles are very suitable for fast SFC separations of polymers.  相似文献   

8.
林涛  雷根虎 《色谱》2001,19(1):51-54
 用一种新的计算程序进行毛细管气相色谱线性程序升温的优化。在OV 10 1固定相上对 2 1种Kovats保留指数为 6 0 0~ 10 0 0的组分进行了自动寻优工作 ,并分别在起始温度为 2 5℃和 30℃的线性程序升温条件下取得了较好的结果。这种优化方法不但节省了计算时间 ,而且在对计算程序进行适当修改后 ,可以用于多阶程序升温的优化工作。  相似文献   

9.
Summary Wall-coated open tubular columns prepared from chemically modified teflon tubing have been developed for gas chromatography. Chemical reaction of the inner walls of teflon tubing allows bonding of an adhesive layer on which a variety of stationary phaes can be coated. Test mixtures of alkanes and alcohols were used to investigate the chromatographic properties of these columns and the stability and mixing of the adhesive and stationary phae layers. the results in dicate that mixing of the layers is negligible and that the column is stable for a long period of time.Principle author  相似文献   

10.
Alumina-coated porous layer open tubular (PLOT) columns are widely used for analyses of light hydrocarbons (C1 to C6). There is, however, a need for improved selectivity for complex analyses such as the determination of impurities in high purity petrochemical products. Some commercial alumina PLOT columns do not have sufficient selectivity for such analyses. The selectivity of four commercial alumina PLOT columns is evaluated for analyses of propylene and ethylene, and differences in column selectivity discussed. Requirements of column selectivity and retention are presented for several applications including the analysis of refinery gas, transformer oil gas, and fuel gas.  相似文献   

11.
Summary In the framework of the cometary sampling and composition (COSAC) experiment of the European Space Agency (ESA) Rosetta space mission to a comet, a new generation of porous polymer porous-layer open tubular (PLOT) columns has been investigated with the aim of separating the light organic compounds targeted by the experiment within the constraints of the operating conditions used in space. Both styrene-divinylbenzene and ethylene glycol-dimethyl acrylate-divinylbenzene porous polymers can be used to separate most of the target compounds, but the latter was selected because of its better separating properties. The most appropriate column characteristics were found to be 10 m length, 0.18 mm internal diameter, and 1–2 μm layer thickness, despite the low sample-loading capacity of such a column, which impairs its chromatographic performance. The influence of column overloading on retention properties and efficiency was, therefore, studied. To achieve the separation with optimum sensitivity, and within the in-situ time allowed for the analysis, it was also demonstrated that the maximum allowed temperature and reduced outlet pressure are required. Finally, it was shown that in the presence of water, the most abundant volatile compound in comets the separating properties of the studied columns are conserved. This paper thus demonstrates the suitability of the porous polymer PLOT column selected for the COSAC experiment and requirements for use in space; it is the first porous polymer PLOT column to be used in space exploration. Presented at: 23rd International Symposium on Chromatography, London, UK, October 1–5, 2000  相似文献   

12.
A high-temperature ionic liquid, trihexyl(tetradecyl)phosphonium bis(trifluoromethane)sulfonamide, was used as the primary column stationary phase for comprehensive two-dimensional gas chromatography (GC × GC). The ionic liquid (IL) column was coupled to a 5% diphenyl/95% dimethyl polysiloxane (HP-5) secondary column. The retention characteristics of the IL column were compared to polyethylene glycol (DB-Wax) and 50% phenyl/50% methyl polysiloxane (HP-50+). A series of homologous compounds that included hydrocarbons, oxygenated organics, and halogenated alkanes were analyzed with each column combination. This comparison showed that the ionic liquid is less polar than DB-Wax but more polar than HP-50+. The most unique feature of the IL × HP-5 column combination is that alkanes, cyclic alkanes, and alkenes eluted in a narrow band in the GC × GC chromatogram; whereas, these compounds occupied a much larger portion of the DB-Wax × HP-5 and the HP-50+ × HP-5 chromatograms. Each column combination was used to analyze diesel fuel. The IL × HP-5 chromatogram displayed narrow bands for three major compound classes in diesel fuel: saturates, monoaromatics, and diaromatics. The IL column was used at temperatures as high as 290 °C for several months without any noticeable changes in column performance.  相似文献   

13.
An overview of the existing methods for minimization of the analysis time in gas chromatography (GC) is presented and a new system for fast temperature programming and very fast cooling down is evaluated. In this study, a system of coaxial tubes, a heating/cooling module (HC-M), was developed and studied with a capillary column placed inside the HC-M. The module itself was heated by a GC oven and cooled down by an external cooling medium. The HC-M was heated at rates of up to 330 °C min−1 and cooled at the rate of 6000 °C min−1. The GC system was prepared for the next run within a few seconds. The HC-M permits good separation reproducibility, comparable with that of a conventional GC, expressed in terms of relative retention times and peak areas of analytes reproducibilities. The HC-M can be used within any commercial gas chromatograph.  相似文献   

14.
The need for faster and more efficient separations of complex mixtures of organic compounds by gas chromatography has led to the development of small inner diameter open tubular columns. Owing to their decreased plate height, extremely narrow peaks are obtained. When differently sized columns with equal plate numbers are compared, injection of a fixed amount of a solute will give the highest detector signals for the smallest bore columns. When P is defined as the ratio of the column inlet and outlet pressures, it can be seen from theory that under normalized chromatographic conditions the minimum detectable amount (Qº) for a mass flow sensitive detector increases proportionally to the square of the column diameter for P = 1. In the situation of greater interest in the practice of open tubular gas chromatography where P is large, a linear relationship is derived between Qº and the column diameter. It is a widespread misunderstanding, however, that narrow bore capillary columns should be used for this reason in trace analysis. If a fixed relative contribution of the injection band width to the overall peak variance is allowed, a decreased plate height drastically restricts the maximum sample volume to be injected. It is shown that the minimum analyte concentration in the injected sample (Cº) is inversely proportional to the column inner diameter when a mass flow sensitive detector is used. For actual concentrations less than Cº, sample preconcentration is required. The effect of peak resolution and selectivity of the stationary phase in relation to Cº and Qº will be discussed as well. The validity of the given theory is experimentally investigated. Minimum analyte concentrations and minimum detectable amounts are compared using columns with different inner diameter.  相似文献   

15.
A microwave gas chromatography (GC) column oven is engineered to generate a uniform microwave field around an open tubular column with the elimination of cold spots, which are common in a domestic microwave oven. Short cool-down time in microwave heating makes it possible to employ negative temperature programming for the enhanced separation of compounds during the process. The feasibility of negative temperature programming in microwave GC is investigated for the analysis and quantitation of four different pairs of nonvolatile and volatile compounds. The influence of intermediate column cooling rate, holding time in the cooling ramp, and reheating rate after the cooling ramp for enhanced resolution are investigated. The results obtained from negative temperature programming are compared with those from positive temperature programming. Negative temperature programming affords greater resolution of some critical pairs of analytes.  相似文献   

16.
Headspace solid‐phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid‐phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box‐plot analysis showed that except for cyclohexanone, 2‐ethyl‐1‐hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n‐heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions.  相似文献   

17.
Gas chromatography mass spectrometry of a number of steroidal spirolactones and their TMS ethers is reported. Open tubular column gas chromatography provides useful structural information for these compounds as shown by shifts in retention index values. The electron impact fragmentation pathways have been established for a number of the compounds. The results of the study indicate that open tubular column gas chromatography mass spectrometry will be of value in studies of the metabolism of this class of steroids in animals and man.  相似文献   

18.
A 3 m zwitterionic polymeric porous layer open tubular column (3 m × 25 μm id × 375 μm od) with a polymeric porous layer thickness of 4 μm was fabricated by the copolymerization of [2‐(methacryloyloxy)ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide and N,N’‐methylenebis(acrylamide). The effects of the diameter of the capillary, reaction temperature, and polymerization time on the preparation of the open tubular column were investigated. Characterized by scanning electron microscopy, the zwitterionic layer was observed to be rough and throughout the fused‐silica capillary homogenously, which increased the phase ratio. The separation of neutral, basic, and acidic compounds demonstrates the strong hydrophilicity of the poly[2‐(methacryloyloxy)ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide coating. In addition, the poly[2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide porous layer open tubular column was applied for the analysis of flavonoids from the rootstalk of licorice, revealing the potential in separating complex samples. The relative standard deviation of retention time for run‐to‐run (n = 5), day‐to‐day (n = 3), and column‐to‐column (n = 3) of toluene, N,N‐dimethylformamide, formamide, and thiourea were below 1.2%, exhibiting good repeatability.  相似文献   

19.
Summary Effects of column temperature on the retention behaviour of aromatic hydrocarbons and dialkyl phthalates were investigated in capillary supercritical fluid chromatography (SFC) with carbon dioxide as the mobile phase. Negative temperature programming could partly replace pressure programming. Positive temperature programming was applicable to solutes with proper volatility, in which gas chromatography-like retention mechanism (partition process) was involved.  相似文献   

20.
Summary The gas chromatography of all chlorinated methyl acetates, methyl propanoates and methyl mono- and dichlorobutanoates has been studied on Carbowax 20M and SE-30 glass capillary columns under various running conditions. The order of elution on a non-polar column was largely determined by the boiling point of esters, whereas on a polar column it was much influenced by the structure of compounds. Complete separation of the combined mixture of all 27 compounds could not be achieved, however, methyl 3,3-dichlorobutanoate was the only ester overlapped on both columns in spite of the various column temperatures used. The best separation of the mixture was on Carbowax 20M with a temperature program from 50°C at 8°C/min, isothermal running conditions leading either to poor separation of volatile components or long analysis time and broad peaks of higher chlorinated esters. The relative retention times for compounds at the various column temperatures are given and the retention order on a polar and on a non-polar column discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号