首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic spherical carbon was synthesized by a facile hydrothermal carbonization procedure with biomass glucose as the carbon precursor and nanoclusters iron colloid as magnetic precursor. The textures of the as‐prepared magnetic spherical carbon were characterized by nitrogen adsorption–desorption isotherms, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy and vibration sample magnetometry. Results indicated that the magnetic spherical carbon possessed high surface area as well as strong magnetism, which endows the material with good adsorption capability and easy separation properties. To assess its absorption performance, the magnetic spherical carbon was employed as adsorbent for the extraction and preconcentration of phthalate esters from lake water and milk samples before high‐performance liquid chromatographic analysis. Some key parameters that could influence the enrichment efficiency were investigated. Under the optimum conditions, a good linearity was achieved with the linear correlation coefficients higher than 0.9973. The limits of detection (S/N = 3) were 0.05–0.08 ng/mL for lake water and 0.1–0.2 ng/mL for milk samples. The recoveries of the analytes for the method were in the range 80.1–112.6%.  相似文献   

2.
A new kind of magnetic N‐doped mesoporous carbon was prepared by the one‐step carbonization of a hybrid precursor (glucose, melamine, and iron chloride) in a N2 atmosphere with a eutectic salt (KCl/ZnCl2) as the porogen. The obtained magnetic N‐doped mesoporous carbon showed excellent characteristics, such as strong magnetic response, high surface area, large pore volume, and abundant π‐electron system, which endow it with a great potential as a magnetic solid‐phase extraction adsorbent. To evaluate its adsorption performance, the magnetic N‐doped mesoporous carbon was used for the extraction of three phthalate esters from soft drink samples followed by high‐performance liquid chromatographic analysis. Under the optimum conditions, the developed method showed a good linearity (1.0–120.0 ng/mL), low limit of detection (0.1–0.3 ng/mL, S/N = 3), and good recoveries (83.2–119.0%) in soft drink samples. The results indicated that the magnetic N‐doped mesoporous carbon has an excellent adsorption capacity for phthalate esters and the present method is simple, accurate, and highly efficient for the extraction and determination of phthalate esters in complex matrix samples.  相似文献   

3.
Magnetic CoFe2O4‐embedded porous graphitic carbon nanocomposites were prepared through a facile solid‐phase thermal reaction with NaCl as a template. The material was applied in the magnetic solid‐phase extraction process coupled with high performance liquid chromatography with a diode array detector to detect the trace fenpropathrin, cyhalothrin, S‐fenvalerate, and bifenthrin in different water samples. The synthesis conditions of nanomaterial including glucose concentration and calcination time on extraction performance for pyrethroid pesticides have been investigated. Different magnetic solid‐phase extraction parameters have been studied, such as the nanomaterial amount, solution pH, eluent types, adsorption time, and the reusability. Under the optimum conditions, good recoveries (80.2–110.9%) were achieved with relative standard deviations of 0.2–5.8%. There are probably hydrophobic interactions and dipole–dipole attractions between nanocomposites and the analytes.  相似文献   

4.
An iron‐embedded porous carbon material (MIL‐53‐C) was fabricated by the direct carbonization of MIL‐53. The MIL‐53‐C possesses a high surface area and good magnetic behavior. The structure, morphology, magnetic property, and porosity of the MIL‐53‐C were studied by scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and N2 adsorption. With the use of MIL‐53‐C as the magnetic solid‐phase extraction adsorbent, a simple and efficient method was developed for the magnetic solid‐phase extraction of three hormones from water and human urine samples before high‐performance liquid chromatography with UV detection. The developed method exhibits a good linear response in the range of 0.02–100 ng/mL for water and 0.5–100 ng/mL for human urine samples , respectively. The limit of detection (S/N = 3) for the analytes was 0.005–0.01 ng/mL for water sample and 0.1–0.3 ng/mL for human urine sample. The limit of quantification (S/N = 10) of the analytes were in the range of 0.015–0.030 and 0.3–0.9 ng/mL, respectively.  相似文献   

5.
A novel magnetic adsorbent Fe3O4/reduced graphene oxide‐carbon nanotubes, was prepared by one‐pot solvothermal synthesis method. It was characterized by scanning electron microscopy, X‐ray powder diffraction and vibrating sample magnetometry. The diameter of Fe3O4 microparticles was about 350 nm, which were covered by carbon nanotubes and reduced graphene oxide sheets, while carbon nanotubes inserted between the reduced graphene oxide sheets effectively prevented their aggregation. The composite had large surface area and good magnetic property, suiting for magnetic solid‐phase extraction and the determination of sulfonamides, by coupling with high‐performance liquid chromatography. Under the optimized conditions (including extraction time, amount of adsorbent, solution pH, ionic strength and desorption conditions), a good linear was achieved in the concentration range of 5–500 μg/L and the low limits of detection and low limits of quantification were 0.35–1.32 and 1.16–4.40 μg/L, respectively. The enrichment factors were estimated to be 24.72 to 30.15 fold. The proposed method was applied for the detection of sulfonamides in milk sample and the recoveries were 88.4–105.9%, with relative standard deviations of 0.74–5.38%.  相似文献   

6.
Aminosilanized magnetic carbon microspheres as a novel adsorbent were designed and fabricated. The adsorbent was used for the magnetic solid‐phase extraction of bisphenols at trace levels from environmental water samples before liquid chromatography with tandem mass spectrometry analysis. The structure, surface, and magnetic behavior of the as‐prepared aminosilanized magnetic carbon microspheres were characterized by elemental analysis, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, powder X‐ray diffraction, and vibrating sample magnetometry. The effects of the experimental parameters were investigated by the Plackett–Burman design, and then the parameters that were significant to the extraction efficiencies were optimized through a response surface methodology. The aminosilanized magnetic carbon microspheres exhibited high adsorption efficiency and selectivity for bisphenols. Under optimal conditions, low limits of detection (0.011–2.22 ng/L), and a wide linear range (2–3 orders of magnitude), good repeatability (4.7–7.8%, n = 5), and reproducibility (6.0–8.3%, n = 3) were achieved. The results demonstrate that the novel adsorbent possesses great potentials in the determination of trace levels of bisphenols in environmental water samples.  相似文献   

7.
Microcystins (MCs), produced by freshwater cyanobacteria, can be serious water pollutants, so it is important to monitor their concentration in drinking water. We have developed a method for rapid and accurate determination of microcystin levels in environmental water, using magnetic solid‐phase extraction and high‐performance liquid chromatography with UV detection. The magnetic composite material, which was combined with cetylpyridinium chloride, was prepared by hydrothermal synthesis. The optimal extraction of microcystins in water sample was achieved by optimizing the amount of adsorbent, time of adsorption, ratio of eluting solvent, and volume of eluent. Under the optimal conditions, the limit of detection of MC‐LR was 0.001 μg/L, and the limit of quantification was 0.0028 μg/L. The limit of detection of MC‐RR was 0.001 μg/L, and the limit of quantification was 0.003 μg/L. These values are far lower than those established by the International Health Organization for the maximum concentration of microcystins in drinking water. The magnetic solid‐phase extraction adsorbent used in this method has the advantages of simple preparation, low price, and easy solid–liquid separation, and it can be used for the rapid and sensitive monitoring of trace microcystins in environmental water samples.  相似文献   

8.
A novel magnetic porous carbon derived from a bimetallic metal–organic framework, Zn/Co‐MPC, was prepared by introducing cobalt into ZIF‐8. Magnetic porous carbon that possesses magnetic properties and a large specific surface area was firstly fabricated by the direct carbonization of Zn/Co‐ZIF‐8. The prepared magnetic porous carbon material was characterized by scanning electron microscopy, transmission electron microscopy, powder X‐ray diffraction, N2 adsorption, and vibrating sample magnetometry. The prepared magnetic porous carbon was used as a magnetic solid‐phase extraction adsorbent for the enrichment of chlorophenols from water and honey tea samples before high‐performance liquid chromatography analysis. Several experimental parameters that could influence the extraction efficiency were investigated and optimized. Under the optimum conditions, good linearities (r > 0.9957) for all calibration curves were obtained with low limits of detection, which are in the range of 0.1–0.2 ng mL?1 for all the analytes. The results showed that the prepared magnetic porous carbon had an excellent adsorption capability toward the target analytes.  相似文献   

9.
We adopted a facile hydrofluoric acid‐free hydro‐/solvothermal method for the preparation of four magnetic iron(III)‐based framework composites (MIL‐101@Fe3O4‐COOH, MIL‐101‐NH2@Fe3O4‐COOH, MIL‐53@Fe3O4‐COOH, and MIL‐53‐NH2@Fe3O4‐COOH). The obtained four magnetic iron(III)‐based framework composites were applied to magnetic separation and enrichment of the fungicides (prochloraz, myclobutanil, tebuconazole, and iprodione) from environmental samples before high‐performance liquid chromatographic analysis. MIL‐101‐NH2@Fe3O4‐COOH showed more remarkable pre‐concentration ability for the fungicides as compared to the other three magnetic iron(III)‐based framework composites. The extraction parameters affecting enrichment efficiency including extraction time, sample pH, elution time, and the desorption solvent were investigated and optimized. Under the optimized conditions, the standard curve of correlation coefficients were all above 0.991, the limits of detection were 0.04–0.4 μg/L, and the relative standard deviations were below 10.2%. The recoveries of two real water samples ranged from 71.1–99.1% at the low spiking level (30 μg/L). Therefore, the MIL‐101‐NH2@Fe3O4‐COOH composites are attractive for the rapid and efficient extraction of fungicides from environmental water samples.  相似文献   

10.
Metal–organic frameworks‐5 (MOF‐5) was explored as a template to prepare porous carbon due to its high surface area, large pore volume, and permanent nanoscale porosity. Magnetic porous carbon, Co@MOF‐5‐C, was fabricated by the one‐step direct carbonization of Co‐doped MOF‐5. After carbonization, the magnetic cobalt nanoparticles are well dispersed in the porous carbon matrix, and Co@MOF‐5‐C displays strong magnetism (with the saturation magnetization intensity of 70.17emu/g), high‐specific surface area, and large pore volume. To evaluate its extraction performance, the Co@MOF‐5‐C was applied as an adsorbent for the magnetic solid‐phase extraction of endocrine disrupting chemicals, followed by their analysis with high‐performance liquid chromatography. The developed method exhibits a good linear response in the range of 0.5–100 ng/mL for pond water and 1.0–100 ng/mL for juice samples. The limits of detection (S/N  = 3) for the analytes were in the range of 0.1–0.2 ng/mL.  相似文献   

11.
In this work, a simple, facile, and sensitive magnetic solid‐phase extraction method was developed for the extraction and enrichment of three representative steroid hormones before high‐performance liquid chromatography analysis. Gold‐modified Fe3O4 nanoparticles, as novel magnetic adsorbents, were prepared by a rapid and environmentally friendly procedure in which polydopamine served as the reductant as well as the stabilizer for the gold nanoparticles, thus successfully avoiding the use of some toxic reagents. To obtain maximum extraction efficiency, several significant factors affecting the preconcentration steps, including the amount of adsorbent, extraction time, pH of the sample solution, and the desorption conditions, were optimized, and the enrichment factors for three steroids were all higher than 90. The validity of the established method was evaluated and good analytical characteristics were obtained. A wide linearity range (0.8–500 μg/L for all the analytes) was attained with good correlation (R2 ≥ 0.991). The low limits of detection were 0.20–0.25 μg/L, and the relative standard deviations ranged from 0.83 to 4.63%, demonstrating a good precision. The proposed method was also successfully applied to the extraction and analysis of steroids in urine, milk, and water samples with satisfactory results, which showed its reliability and feasibility in real sample analysis.  相似文献   

12.
The fabrication of novel poly(ionic liquids)‐modified polystyrene (PSt) magnetic nanospheres (PILs‐PMNPs) by a one‐pot miniemulsion copolymerization reaction was achieved through an efficient microwave‐assisted synthesis method. The morphology, structure, and magnetic behavior of the as‐prepared magnetic materials were characterized by using transmission electron microscopy, vibrating sample magnetometry, etc. The magnetic materials were utilized as sorbents for the extraction of phthalate esters (PAEs) from beverage samples followed by high‐performance ultrafast liquid chromatography analysis. Significant extraction parameters that could affect the extraction efficiencies were investigated particularly. Under optimum conditions, good linearity was obtained in the concentration range of 0.5–50 (dimethyl phthalate), 0.3–50 (diethyl phthalate), 0.2–50 (butyl benzyl phthalate), and 0.4–50 μg/L (di‐n‐butyl phthalate), with correlation coefficients R 2 > 0.9989. Limits of detection were in the range 125–350 pg. The proposed method was successfully applied to determine PAEs from beverage samples with satisfactory recovery ranging from 77.8 to 102.1% and relative standard deviations ranging from 3.7 to 8.4%. Comparisons of extraction efficiency with PSt‐modified MNPs as sorbents were performed. The results demonstrated that PILs‐PMNPs possessed an excellent adsorption capability toward the trace PAE analytes.  相似文献   

13.
A simple pH‐responsive magnetic solid‐phase extraction method was developed using graphene oxide–coated nanoscale zerovalent iron nanoparticles as an efficient adsorbent prior to high‐performance liquid chromatography‐tandem mass spectrometry for determination of ultra‐trace quinolones in milk samples. Various parameters affecting maghemite synthesis and separation such as pH of sample solution, amount of magnetic adsorbent, eluent type, and volume were optimized. The limits of detection are from 3.1 to 13.3 ng/L. The intra‐ and interprecision values are in the range of 2.9–6.9% and 7.6–15.1%, respectively. Recoveries are from 82.4 to 103.9%. Therefore, this simple and sensitive method is suitable for detecting ultra‐trace quinolone residues in milk.  相似文献   

14.
A magnetic polytriphenylamine porous organic polymer was prepared through simple self‐polycondensation of triphenylamine followed by coprecipitation with Fe2+ and Fe3+. It was applied as a magnetic adsorbent for the extraction of six benzoylurea insecticides from tomato, cucumber, and watermelon samples before their high‐performance liquid chromatography and mass spectral detection. Under the optimized experimental conditions, the established method gave a low limit of detection ranging from 0.05 to 0.1 ng/g and a good linear response ranging from 0.2 to 40 ng/g with coefficients of determination >0.99. The method recoveries for spiked analytes at the concentrations of 3 and 15 ng/g in real samples were in the range of 87.7–106.7% with the relative standard deviations <6.4%. The results indicated that it had a good adsorption capability toward the target analytes due to the π‐stacking and hydrogen bonding interactions. The polymer material showed great potential in the efficient extraction of organic compounds from real samples with complex matrixes.  相似文献   

15.
A novel magnetic core–shell material polyaniline@SiO2@Fe (PANI@SiO2@Fe) has been successfully synthesized and investigated as an effective adsorbent for the magnetic solid‐phase extraction of typical endocrine disrupting compounds such as bisphenol A, tetrabromobisphenol A, and 4‐nonylphenol from water samples. The morphology of the as‐prepared PANI@SiO2@Fe was characterized by transmission electron microscopy and X‐ray diffraction. The main parameters that influenced the enrichment performance such as the kind of eluent, amount of adsorbent, volume of eluent, adsorption time, elution time, ionic strength, pH, concentration of humic acid, and sample volume were investigated. Under the optimal conditions, a good linear relationship was found in the range of 0.05–100 μg/L for bisphenol A, 0.05–300 μg/L for tetrabromobisphenol A, and 0.05–250 μg/L for 4‐nonylphenol, respectively. The correlation coefficients are all above 0.995. The limits of detection were in the range of 0.009–0.04 μg/L, and precisions were under 3.73% (n  = 6). The real water analysis indicated that the spiked recoveries were in the range of 92.9–98.9% (n  = 3). All these results indicated that the developed method was an efficient tool for the analysis of bisphenol A, tetrabromobisphenol A, and 4‐nonylphenol.  相似文献   

16.
A core‐shell structured magnetic polyimide composite has been synthesized by the covalent coating of a mesoporous polyimide polymer onto the surface of magnetite nanoparticles. The nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption‐desorption isotherms, X‐ray diffraction, infrared spectroscopy, and vibrating sample magnetometry. The results showed that the prepared composite had a large surface area (306.45 m²/g), a unique pore size (2.15 nm), and strong magnetic properties (45.7 emμ/g), rendering it a promising sorbent material for magnetic solid‐phase extraction. The parameters that affect the extraction efficiency of rhodamine B were optimized with the assistance of response surface methodology. Under the optimal conditions, the developed method has been successfully applied to determine the rhodamine B in food samples. The linearities and limits of detection of rhodamine B in hot pepper, red wine, and chili powder samples were measured. Satisfactory recoveries in the range of 94.8–103.3% with relative standard deviations <5.5% were obtained. Investigation of the adsorption mechanism of magnetic polyimide composite indicated that multiple interactions, including hydrophobic, π‐π, and hydrogen bonding interactions, were involved in the adsorption process.  相似文献   

17.
Here, we describe a simple one‐pot solvothermal method for synthesizing MIL‐101(Fe)@polydopamine@Fe3O4 composites from polydopamine‐modified Fe3O4 particles. The composite was used as a magnetic adsorbent to rapidly extract sulfonylurea herbicides. The herbicides were then analyzed by high‐performance liquid chromatography. The best possible extraction efficiencies were achieved by optimizing the most important extraction parameters, including desorption conditions, extraction time, adsorbent dose, salt concentration, and the pH of the solution. Good linearity was found (correlation coefficients >0.9991) over the herbicide concentration range 1–150 μg/L using the optimal conditions. The limits of detection (the concentrations giving signal/noise ratios of 3) were low, at 0.12–0.34 μg/L, and repeatability was good (the relative standard deviations were <4.8%, n = 6). The method was used successfully to determine four sulfonylurea herbicides in environmental water and vegetable samples, giving satisfactory recoveries of 87.1–108.9%. The extraction efficiency achieved using MIL‐101(Fe)@polydopamine@Fe3O4 was compared with the extraction efficiencies achieved using other magnetic composites (polydopamine@Fe3O4, Hong Kong University of Science and Technology (HKUST)‐1@polydopamine@Fe3O4, and MIL‐100(Fe)@polydopamine@Fe3O4). The results showed that the magnetic MIL‐101(Fe)@polydopamine@Fe3O4 composites have great potential for the extraction of trace sulfonylurea herbicides from various sample types.  相似文献   

18.
The present work describes a simple route to magnetize MIL‐53(Al)‐NH2 sorbent for rapid extraction of phenol residues from environmental samples. To extend the applications and performances of the metal‐organic frameworks in the field of adsorption materials, we combined the properties of metal‐organic frameworks and magnetite to decrease the extraction time and simplify the extraction process as well. In this study, a simple and quick vortex‐assisted dispersive magnetic solid phase extraction method for the extraction of ten United States Environmental Protection Agency's priority phenols from water samples prior to analysis by high‐performance liquid chromatography with photodiode array detection was proposed. The developed method exhibits a rapid enrichment of the target analytes within 10 s for extraction and 10 s for desorption. Low detection limits of 1.8‐41.7 µg/L and quantitation limits of 6.0‐139.0 µg/L with the relative standard deviations for intra‐ and interday analyses less than 12% were achieved. Satisfactory recoveries in the range of 80‐111% with the relative standard deviations less than 11% demonstrated that Fe3O4/MIL‐53(Al)‐NH2 is promising sorbent in the field of magnetic solid‐phase extraction for environmental samples.  相似文献   

19.
In this work, a magnetic β‐cyclodextrin polymer was successfully prepared and used as an adsorbent for the magnetic solid‐phase extraction of six benzoylurea insecticides (diflubenzuron, triflumuron, hexaflumuron, teflubenzuron, flufenoxuron, and chlorfluazuron) from honey, tomato, and environmental water samples. The influence of the main experimental conditions on the extraction was studied. Under the optimized conditions, the β‐cyclodextrin polymer@Fe3O4 showed an excellent extraction performance for the benzoylurea insecticides. A good linearity was obtained for the analytes in the range of 3.0–800 ng/g for honey samples, 0.3–160 ng/g for tomato samples, and 0.1–80.0 ng/mL for water samples, with the correlation coefficients above 0.9998. Satisfactory repeatabilities were achieved, with the relative standard deviations less than 5.7%. The limits of detection (S/N = 3) of the method for the benzoylurea insecticides were 0.2–0.8 ng/g for honey samples, 0.04–0.10 ng/g for tomato samples, and 0.02–0.05 ng /mL for water samples. The method was successfully used for the determination of the six benzoylurea insecticides residues in honey, tomato, and environmental water samples with a satisfactory result.  相似文献   

20.
In this study, magnetized MOF‐74 (Ni) was prepared using an ultrasound‐assisted synthesis method. This novel functional magnetic adsorbent was characterized using various techniques. Using the prepared material as adsorbents, a magnetic solid‐phase extraction method coupled with high‐performance liquid chromatography was proposed for determining four phthalate esters in Chinese liquor samples. The extraction parameters, including solution pH, adsorbent amount, extraction time, and eluent type and volume, were optimized. Under the optimized conditions, proposed method showed good linearity within the range of 1.53–200 μg/L for diphenyl phthalate, 2.03–200 μg/L for butyl benzyl phthalate, 7.02–200 μg/L for diamyl phthalate, and 6.03–200 μg/L for dicyclohexyl phthalate, with correlation coefficients > 0.9944, low limits of detection (0.46–2.10 μg/L, S/N = 3), and good extraction repeatability (relative standard deviations of 3.7%, n = 6). This method was successfully used to analyze phthalate esters in Chinese liquor samples with recoveries of 74.4–104.8%. Two phthalate esters were detected in two samples, both at concentrations that satisfied the Chinese national standard, indicating this method has practical application prospects. The extraction efficiency of this method was also compared with conventional solid‐phase extraction using commercial C18 cartridges. The results demonstrated that the proposed magnetic solid‐phase extraction is a simple, time‐saving, efficient, and low‐cost method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号