首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal stability of several commonly used crystalline matrix‐assisted ultraviolet laser desorption/ionization mass spectrometry (UV‐MALDI‐MS) matrices, 2,5‐dihydroxybenzoic acid (gentisic acid; GA), 2,4,6‐trihydroxyacetophenone (THA), α‐cyano‐4‐hydroxycinnamic acid (CHC), 3,5‐dimethoxy‐4‐hydroxycinnamic acid (sinapinic acid; SA), 9H‐pirido[3,4‐b]indole (nor‐harmane; nor‐Ho), 1‐methyl‐9H‐pirido[3,4‐b]indole (harmane; Ho), perchlorate of nor‐harmanonium ([nor‐Ho + H]+) and perchlorate of harmanonium ([Ho + H]+) was studied by heating them at their melting point and characterizing the remaining material by using different MS techniques [electron ionization mass spectrometry (EI‐MS), ultraviolet laserdesorption/ionization‐time‐of‐flight‐mass spectrometry (UV‐LDI‐TOF‐MS) and electrospray ionization‐time‐of‐flight‐mass spectrometry (ESI‐TOF‐MS)] as well as by thin layer chromatography analysis (TLC), electronic spectroscopy (UV‐absorption, fluorescence emission and excitation spectroscopy) and 1H nuclear magnetic resonance spectroscopy (1H‐NMR). In general, all compounds, except for CHC and SA, remained unchanged after fusion. CHC showed loss of CO2, yielding the trans‐/cis‐4‐hydroxyphenylacrilonitrile mixture. This mixture was unambiguously characterized by MS and 1H‐NMR spectroscopy, and its sublimation capability was demonstrated. These results explain the well‐known cluster formation, fading (vanishing) and further recovering of CHC when used as a matrix in UV‐MALDI‐MS. Commercial SA (SA 98%; trans‐SA/cis‐SA 5 : 1) showed mainly cis‐ to‐trans thermal isomerization and, with very poor yield, loss of CO2, yielding (3′,5′‐dimethoxy‐4′‐hydroxyphenyl)‐1‐ethene as the decarboxilated product. These thermal conversions would not drastically affect its behavior as a UV‐MALDI matrix as happens in the case of CHC. Complementary studies of the photochemical stability of these matrices in solid state were also conducted. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Cinnamic acid derivatives, particularly α‐cyano‐4‐hydroxycinnamic acid (E‐α‐cyano‐4‐hydroxycinnamic acid or (E)‐2‐cyano‐3‐(4‐hydroxyphenyl)prop‐2‐enoate; CHCA), have been extensively used especially for protein and peptide analysis. Together with the introduction of ionic liquid MALDI matrix (ILM) started the study of applications of IL prepared with CHCA and a counter organic base (ie, aliphatic amines) in which CHCA moiety is the chromophore responsible of UV‐laser absorption. Despite the extensive studies of norharmane (9H‐pyrido[3,4‐b]indole; nHo) applications as matrix and its peculiar basic properties in the ground and electronic excited state, nHo containing ILM was never tested in MALDI‐MS experiments. This pyrido‐indole compound was introduced as MALDI matrix 22 years ago for different applications including low molecular weight (LMW) carbohydrates (neutral, acidic, and basic carbohydrates). These facts encouraged us to use it as a base, for the first time, for ILM preparation. As a rational design of new IL MALDI matrices, E‐α‐cyanocinnamic acid.nHo and E‐cinnamic acid.nHo were prepared and their properties as matrices studied. Their performance was compared with that of (a) the corresponding IL prepared with butylamine as basic component, (b) the corresponding crystalline E‐α‐cyanocinnamic and E‐cinnamic acid, and (c) the classical crystalline matrices (2,5‐dihydroxybenzoic acid, DHB; nHo) used in the analysis of neutral/sulfated carbohydrates. The IL DHB.nHo was tested, too. Herein, we demonstrate the outstanding performance for the IL CHCA.nHo for LMW carbohydrate in positive and negative ion mode (linear and reflectron modes). Sulfated oligosaccharides were detected in negative ion mode, and although the dissociation of sulfate groups was not completely suppressed the relative intensity (RI) of [M ? Na]? peak was quite high. Additionally, to better understand the quite different performance of each IL tested as matrix, the physical and morphological properties in solid state were studied (optical image; MS image).  相似文献   

3.
MALDI mass spectrometry imaging (MSI) enables analysis of peptides along with histology. However, there are several critical steps in MALDI MSI of peptides, 1 of which is spectral quality. Suppression of MALDI matrix clusters by the aid of ammonium salts in MALDI experiments is well known. It is asserted that addition of ammonium salts dissociates potential matrix adducts and thereafter decreases matrix cluster formation. Consequently, MALDI MS sensitivity and mass accuracy increase. Up to our knowledge, a limited number of MALDI MSI studies used ammonium salts as matrix additives to suppress matrix clusters and enhance peptide signals. In this work, we investigated the effect of ammonium phosphate monobasic (AmP) as alpha‐cyano‐4‐hydroxycinnamic acid (α‐CHCA) matrix additive in MALDI MSI of peptides. Prior to MALDI MSI, the effect of varying concentrations of AmP in α‐CHCA was assessed in bovine serum albumin tryptic digests and compared with the control (α‐CHCA without AmP). Based on our data, the addition of AmP as matrix additive decreased matrix cluster formation regardless of its concentration, and specifically, 8 mM AmP and 10 mM AmP increased bovine serum albumin peptide signal intensities. In MALDI MSI of peptides, both 8 and 10 mM AmP in α‐CHCA improved peptide signals especially in the mass range of m/z 2000 to 3000. In particular, 9 peptide signals were found to have differential intensities within the tissues deposited with AmP in α‐CHCA (AUC > 0.60). To the best of our knowledge, this is the first MALDI MSI of peptides work investigating different concentrations of AmP as α‐CHCA matrix additive to enhance peptide signals in formalin‐fixed paraffin‐embedded (FFPE) tissues. Further, AmP as part of α‐CHCA matrix could enhance protein identifications and support MALDI MSI‐based proteomic approaches.  相似文献   

4.
Successful application of matrix‐assisted laser desorption/ionization (MALDI) MS started with the introduction of efficient matrices such as cinnamic acid derivatives (i.e. 3,5‐dimethoxy‐4‐hydroxycinnamic acid, SA; α‐cyano‐4‐hydroxycinnamic acid). Since the empirical founding of these matrices, other commercial available cinnamic acids with different nature and location of substituents at benzene ring were attempted. Rational design and synthesis of new cinnamic acids have been recently described too. Because the presence of a rigid double bond in its molecule structure, cinnamic acids can exist as two different geometric isomers, the E‐form and Z‐form. Commercial available cinnamic acids currently used as matrices are the geometric isomers trans or E (E‐cinnamic and trans‐cinnamic acids). As a new rational design of MALDI matrices, Z‐cinnamic acids were synthesized, and their properties as matrices were studied. Their performance was compared with that of the corresponding E‐isomer and classical crystalline matrices (3,5‐dihydroxybenzoic acid; norharmane) in the analysis of neutral/sulfated carbohydrates. Herein, we demonstrate the outstanding performance for Z‐SA. Sulfated oligosaccharides were detected in negative ion mode, and the dissociation of sulfate groups was almost suppressed. Additionally, to better understand the quite different performance of each geometric isomer as matrix, the physical and morphological properties as well as the photochemical stability in solid state were studied. The influence of the E/Z photoisomerization of the matrix during MALDI was evaluated. Finally, molecular modeling (density functional theory study) of the optimized geometry and stereochemistry of E‐cinnamic and Z‐cinnamic acids revealed some factors governing the analyte–matrix interaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Peptide samples derived from enzymatic in‐gel digestion of proteins resolved by gel electrophoresis often contain high amount of salts originating from reaction and separation buffers. Different methods are used for desalting prior to matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry (MS), e.g. reversed‐phase pipette tip purification, on‐target washing, adding co‐matrices, etc. As a suitable matrix for MALDI MS of peptides, α‐cyano‐4‐hydroxycinnamic acid (CHCA) is frequently used. Crystalline CHCA shows the ability to bind peptides on its surface and because it is almost insoluble in acidic water solutions, the on‐target washing of peptide samples can significantly improve MALDI MS signals. Although the common on‐target washing represents a simple, cheap and fast procedure, only a small portion of the available peptide solution is efficiently used for the subsequent MS analysis. The present approach is a combination of the on‐target washing principle carried out in a narrow‐end pipette tip (e.g. GELoader tip) and preconcentration of peptides from acidified solution by passing it through small CHCA crystals captured inside the tip on a glass microfiber frit. The results of MALDI MS analysis using CHCA‐tip peptide preconcentration are comparable with the use of homemade POROS R2 pipette tip microcolumns. Advantages and limitations of this approach are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We describe here an optimization study of the sample preparation conditions for sensitive detection of peptides by matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS). Among many factors in the conditions, we varied the percent acetonitrile in the peptide solution, the percent acetonitrile in the matrix solution and the α‐cyano‐4‐hydroxycinnamic acid (CHCA) concentration in the matrix solution. CHCA was chosen because it is the most frequently used matrix for analyzing peptides. The well‐established dried‐droplet method was employed for sample deposition. The examined range of the concentration of CHCA was from 0.01 to 10 mg/ml, and the MeCN content of the solvent for matrix/analyte was 10% to 50%. The indicator for the detection sensitivity was the S/N ratio of the peaks of peptides used. Highly increased sensitivity (100‐ to 1000‐fold) was observed for the optimal CHCA concentration of 0.1 mg/ml in 20% MeCN/0.1% aq. trifluoroacetic acid (TFA), as compared with the conventional concentration (10 mg/ml) in 50% MeCN/0.1% aq. TFA. For example, the limit of detection of human ACTH 18–39 was 10 amol/well for the optimal condition but 10 fmol/well for the conventional condition. The optimal condition (0.1 mg/ml CHCA in 20% MeCN/0.1% aq. TFA) was verified with five model peptides and provided significant improvement in sensitivity (by two to three orders of magnitude) compared with the conventional conditions. Optimizing the CHCA concentration and solvent composition significantly improved the detection sensitivity in the analysis of peptides by MALDI‐MS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, we present a rapid and simple method for the separation and direct detection of glutathione by combining gold nanoparticles and MALDI–TOF‐MS with graphene as matrix. Gold nanoparticles enable the selective capture of thiol‐containing compounds. Gold nanoparticles bound with analytes can be mixed with graphene matrix for direct analysis by MALDI–TOF‐MS, which can avoid sample loss and contamination during transfer process. Compared with a conventional matrix, α‐cyano‐4‐hydroxycinnamic acid, graphene exhibits an excellent desorption/ionization efficiency, thermal and mechanical properties. The use of graphene as matrix avoids the fragmentation of analytes. Stable analysis was achieved with less background interference even at the concentration of 0.625 ng/μL. To further confirm its efficiency, the optimized approach was applied to the separation and detection of glutathione in mouse liver extraction. This result showed the great potential of detection of biologically important thiols in biochemical and biomedical research.  相似文献   

8.
Prefabricated surfaces containing α‐cyano‐4‐hydroxycinnamic acid and trypsin have been developed to facilitate enzymatic digestion of endogenous tissue proteins prior to matrix‐assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). Tissue sections are placed onto slides that were previously coated with α‐cyano‐4‐hydroxycinnamic acid and trypsin. After incubation to promote enzymatic digestion, the tissue is analyzed by MALDI IMS to determine the spatial distribution of the tryptic fragments. The peptides detected in the MALDI IMS dataset were identified by Liquid chromatography‐tandem mass spectrometry/mass spectrometry. Protein identification was further confirmed by correlating the localization of unique tryptic fragments originating from common parent proteins. Using this procedure, proteins with molecular weights as large as 300 kDa were identified and their distributions were imaged in sections of rat brain. In particular, large proteins such as myristoylated alanine‐rich C‐kinase substrate (29.8 kDa) and spectrin alpha chain, non‐erythrocytic 1 (284 kDa) were detected that are not observed without trypsin. The pre‐coated targets simplify workflow and increase sample throughput by decreasing the sample preparation time. Further, the approach allows imaging at higher spatial resolution compared with robotic spotters that apply one drop at a time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In a previous study on matrix‐assisted laser desorption ionization (MALDI) of peptides using α‐cyano‐4‐hydroxycinnamic acid (CHCA) as a matrix, we found that the patterns of single‐shot spectra obtained under different experimental conditions became similar upon temperature selection. In this paper, we report that absolute ion abundances are also similar in temperature‐selected MALDI spectra, even when laser fluence is varied. The result that has been obtained using CHCA and 2,5‐dihydroxybenzoic acid as matrices is in disagreement with the hypothesis of laser‐induced ionization of matrix as the mechanism for primary ion formation in MALDI. We also report that the total number of ions in such a spectrum is unaffected by the identity, concentration and number of analytes, i.e. it is the same as that in the spectrum of pure matrix. We propose that the generation of gas‐phase ions in MALDI can be explained in terms of two thermal reactions, i.e. the autoprotolysis of matrix molecules and the matrix‐to‐analyte proton transfer, both of which are in quasi‐equilibrium in the early matrix plume. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The performance of a matrix‐assisted laser desorption/ionization (MALDI) ionic liquid matrix (ILM) consisting of α‐cyano‐4‐hydroxycinnamic acid (CHCA) and aniline (ANI) was evaluated to assess whether it could offer possible advantages over conventional matrices. Ultraviolet (UV), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and laser desorption/ionization mass spectrometry (LDI‐MS) experiments were carried out with the aim of confirming the structure of the ANI‐CHCA ILM. Different model analytes such as amino acids, peptides, proteins, lipids, phospholipids, synthetic polymers, and sugars were tested. Mass spectra with similar or improved signal‐to‐noise (S/N) ratio (compared to CHCA) were invariably obtained demonstrating the potential of this ILM as a general purpose matrix. Furthermore, protein identification by peptide mass fingerprinting (PMF) and database search was facilitated compared to CHCA since higher scores and increased sequence coverage were observed. Finally, a complex lipid mixture (i.e. a raw extract of a milk sample) analysed by MALDI‐MS showed improved S/N ratio, a reduced chemical noise and a limited formation of matrix‐clusters. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The photoinduced reaction of a mixture of (Z)‐α‐cyano‐β‐bromomethylcinnamide (1) and (E)‐α‐cyano‐β‐bromomethylcinnamide (2) with 1‐benzyl‐1, 4‐dihydronicotinamide produces a mixture of the (E)‐ and (Z)‐ isomers of α‐cyano‐β‐methylcinnamide (3 and 4). Using spin‐trapping technique for monitoring reactive intermediate, it is shown that the reaction proceeds via electron transfer‐debromination‐H abstraction mechanism. The thermal reaction of the same substrate with BNAH at 60°C in the dark gives three products: the (E)‐ and (Z)‐isomers of α‐cyano‐β‐methylcinnamide and a dehydrodimeric product; 2, 7‐dicyano‐3, 6‐diphenylocta‐2, 4, 6‐trien‐1, 8‐dioic amide (7). Based on product analysis, scavenger experiment and cyclic voltammetry, an electron transfer‐debromination‐disproportionation mechanism is proposed.  相似文献   

12.
3‐Aminoquinoline/α‐cyano‐4‐hydroxycinnamic acid (3AQ/CHCA) is a liquid matrix (LM), which was reported by Kumar et al. in 1996 for matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry. It is a viscous liquid and has some advantages of durability of ion generation by a self‐healing surface and quantitative performance. In this study, we found a novel aspect of 3AQ/CHCA as a MALDI matrix, which converges hydrophilic material into the center of the droplet of analyte‐3AQ/CHCA mixture on a MALDI sample target well during the process of evaporation of water derived from analyte solvent. This feature made it possible to separate not only the buffer components, but also the peptides and oligosaccharides from one another within 3AQ/CHCA. The MALDI imaging analyses of the analyte‐3AQ/CHCA droplet indicated that the oligosaccharides and the peptides were distributed in the center and in the whole area around the center of 3AQ/CHCA, respectively. This 'on‐target separation' effect was also applicable to glycoprotein digests such as ribonuclease B. These features of 3AQ/CHCA liquid matrix eliminate the requirement for pretreatment, and reduce sample handling losses thus resulting in the improvement of throughput and sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) has been used to characterize poly(L‐lysine) polymers and unique oligomer peptides, like 10‐, 15‐ and 25‐mer [Lys]n oligolysine peptides. Several matrices have been tried in order to find optimal conditions, but only α‐cyano‐4‐hydroxycinnamic acid gave analytically useful spectra. The synthetic oligomers and their mixtures gave good quality spectra, showing protonated and cationized molecules, including doubly charged species. The polymers, analogously, gave a wide distribution of single‐ and double‐cationized peak series. The polymer distributions observed indicate the presence of significant suppression effects. The concentration (matrix/analyte ratio) was found to influence the results significantly; distributions shifting to higher masses when higher polymer concentrations were used. This effect was studied in detail using the synthetic (‘monodisperse’) oligolysine peptides. It was found that the relative intensities change by over an order of magnitude in the 0.1–10 pmol/µL concentration range (typical for most proteomic analyses). The results indicate that concentration effects need to be considered when MALDI‐MS is used for quantitative purposes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Due to the characteristic absorption peaks in the IR region, various molecules can be used as a matrix for infrared matrix‐assisted laser desorption/ionization (IR‐MALDI). Especially in the 6–7 µm‐band IR region, solvents used as the mobile phase for liquid chromatography have absorption peaks that correspond to their functional groups, such as O–H, CO, and CH3. Additionally, atmospheric pressure (AP) IR‐MALDI, which is applicable to liquid‐state samples, is a promising technique to directly analyze untreated samples. Herein we perform AP‐IR‐MALDI mass spectrometry of a peptide, angiotensin II, using a mid‐IR tunable laser with a tunable wavelength range of 5.50–10.00 µm and several different matrices. The wavelength dependences of the ion signal intensity of [M + H]+ of the peptide are measured using a conventional solid matrix, α‐cyano‐4‐hydroxycinnamic acid (CHCA) and a liquid matrix composed of CHCA and 3‐aminoquinoline. Other than the O–H stretching and bending vibration modes, the characteristic absorption peaks are useful for AP‐IR‐MALDI. Peptide ions are also observed from an aqueous solution of the peptide without an additional matrix, and the highest peak intensity of [M + H]+ is at 6.00 µm, which is somewhat shorter than the absorption peak wavelength of liquid water corresponding to the O–H bending vibration mode. Moreover, long‐lasting and stable ion signals are obtained from the aqueous solution. AP‐IR‐MALDI using a 6–7 µm‐band IR tunable laser and solvents as the matrix may provide a novel on‐line interface between liquid chromatography and mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) is a high throughput, easy to use analytical technique. The simple sample preparation of this technique and its tolerance to the presence of contaminants are among its advantages. In contrast, depending on the matrix used, MALDI can ionize and generates ions in the low m /z range that complicate the interpretation of the spectra of low molecular weight compounds. To address this issue, one can envisage the use of tunable ionic matrices that can reduce the low m /z interferents. In this work, the ionic matrices triethylammonium α‐cyano‐4‐hydroxycinnamate and diisopropylammonium α‐cyano‐4‐hydroxycinnamate were used to directly analyze 14 pharmaceutical drugs in different formulations (coated tablets, noncoated tablets, capsules, and solutions). This methodology enabled the detection of their active compounds with minimum sample preparation, thus providing a straightforward approach for the forensic analysis of pharmaceutical drugs in the quest for detecting counterfeits. LDI‐MS experiments were also performed, and the active ingredient in all of the medicines analyzed were detected. However, MALDI‐MS spectra for the medicines analyzed herein showed less or no fragmentation than LDI‐MS, which makes the analysis easier.  相似文献   

16.
Application of matrix‐assisted laser‐desorption/ionization mass spectrometry (MALDI MS) to analysis and characterization of phosphopeptides in peptide mixtures may have a limitation, because of the lower ionizing efficiency of phosphopeptides than nonphosphorylated peptides in MALDI MS. In this work, a binary matrix that consists of two conventional matrices of 3‐hydroxypicolinic acid (3‐HPA) and α‐cyano‐4‐hydroxycinnamic acid (CCA) was tested for phosphopeptide analysis. 3‐HPA and CCA were found to be hot matrices, and 3‐HPA not as good as CCA and 2,5‐dihydroxybenzoic acid (DHB) for peptide analysis. However, the presence of 3‐HPA in the CCA solution with a volume ratio of 1:1 could significantly enhance ion signals for phosphopeptides in both positive‐ion and negative‐ion detection modes compared with the use of pure CCA or DHB, the most common phosphopeptide matrices. Higher signal intensities of phosphopeptides could be obtained with lower laser power using the binary matrix. Neutral loss of the phosphate group (?80 Da) and phosphoric acid (?98 Da) from the phosphorylated‐residue‐containing peptide ions with the binary matrix was decreased compared with CCA alone. In addition, since the crystal shape prepared with the binary matrix was more homogeneous than that prepared with DHB, searching for ‘sweet’ spots can be avoided. The sensitivity to detect singly or doubly phosphorylated peptides in peptide mixtures was higher than that obtained with pure CCA and as good as that obtained using DHB. We also used the binary matrix to detect the in‐solution tryptic digest of the crude casein extracted from commercially available low fat milk sample, and found six phosphopeptides to match the digestion products of casein, based on mass‐to‐charge values and LIFT TOF‐TOF spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Mass spectrometry (MS) profiling of the proteome and peptidome for disease‐associated patterns is a new concept in clinical diagnostics. The technique, however, is highly sensitive to external sources of variation leading to potentially unacceptable numbers of false positive and false negative results. Before MS profiling can be confidently implemented in a medical setting, standard experimental methods must be developed that minimize technical variance. Past studies of variance have focused largely on pre‐analytical variation (i.e., sample collection, handling, etc.). Here, we examined how factors at the analytical stage including the matrix and solid‐phase extraction influence MS profiling. Firstly, a standard peptide/protein sample was measured automatically by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) MS across five consecutive days using two different preparation methods, dried droplet and sample/matrix, of four types of matrix: α‐cyano‐4‐hydroxycinnamic acid (HCCA), sinapinic acid (SA), 2,5‐dihydroxybenzoic acid (DHB) and 2,5‐dihydroxyacetophenone (DHAP). The results indicated that the matrix preparation greatly influenced a number of key parameters of the spectra including repeatability (within‐day variability), reproducibility (inter‐day variability), resolution, signal strength, background intensity and detectability. Secondly, an investigation into the variance associated with C8 magnetic bead extraction of the standard sample prior to automated MS profiling demonstrated that the process did not adversely affect these same parameters. In fact, the spectra were generally more robust following extraction. Thirdly, the best performing matrix preparations were evaluated using C8 magnetic bead extracted human plasma. We conclude that the DHAP prepared according to the dried‐droplet method is the most appropriate matrix to use when performing automated MS profiling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Sample pretreatment is key to obtaining good data in matrix‐assisted laser desorption/ionization mass spectrometry imaging (MALDI‐MSI). Although sublimation is one of the best methods for obtaining homogenously fine organic matrix crystals, its sensitivity can be low due to the lack of a solvent extraction effect. We investigated the effect of incorporating a thin film of metal formed by zirconium (Zr) sputtering into the sublimation process for MALDI matrix deposition for improving the detection sensitivity in mouse liver tissue sections treated with olanzapine. The matrix‐enhanced surface‐assisted laser desorption/ionization (ME‐SALDI) method, where a matrix was formed by sputtering Zr to form a thin nanoparticle layer before depositing MALDI organic matrix comprising α‐cyano‐4‐hydroxycinnamic acid (CHCA) by sublimation, resulted in a significant improvement in sensitivity, with the ion intensity of olanzapine being about 1800 times that observed using the MALDI method, comprising CHCA sublimation alone. When Zr sputtering was performed after CHCA deposition, however, no such enhancement in sensitivity was observed. The enhanced sensitivity due to Zr sputtering was also observed when the CHCA solution was applied by spraying, being about twice as high as that observed by CHCA spraying alone. In addition, the detection sensitivity of these various pretreatment methods was similar for endogenous glutathione. Given that sample preparation using the ME‐SALDI‐MSI method, which combines Zr sputtering with the sublimation method for depositing an organic matrix, does not involve a solvent, delocalization problems such as migration of analytes observed after matrix spraying and washing with aqueous solutions as sample pretreatment are not expected. Therefore, ME‐Zr‐SALDI‐MSI is a novel sample pretreatment method that can improve the sensitivity of analytes while maintaining high spatial resolution in MALDI‐MSI.  相似文献   

19.
The localization of polymeric composition in samples prepared for matrix‐assisted laser desorption/ionization (MALDI) analysis has been investigated by imaging mass spectrometry. Various matrices and solvents were used for sample spot preparation of a polybutyleneglycol (PBG 1000). It was shown that in visibly homogeneous spots, prepared using the ‘dried droplet’ method, separation between matrix and polymer takes place. Moreover, using α‐cyano‐4‐hydroxycinnamic acid (CCA) as matrix and methanol as solvent molecular mass separation of the polymer homologues in the spots was detectable. In contrast to manually spotted samples, dry spray deposition results in homogeneous layers showing no separation effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A series of new 2‐aryl‐7‐cyano/ethoxycarbonyl‐6‐methylthio‐1H‐imidazo[1,2‐b]pyrazoles ( 5 ) have been synthesized in moderate to good yields, via a two‐step cyclocondensation procedure of 5‐amino‐4‐cyano/ethoxycarbonyl‐3‐methylthio‐1H‐pyrazole ( 1 ) and α‐bromoacetophenones ( 3 ) or α‐tosyloxyacetophenones ( 2 ), which were prepared by the reactions of acetophenones with [hydroxy(tosyloxy)iodo]benzene (HTIB). The intermediates, 5‐amino‐1‐(aroylmethyl)‐4‐ cyano/ethoxycarbonyl‐3‐methylthio‐1H‐pyrazoles ( 4 ), have been isolated, serving as evidence for the regioselectivity. When utilizing α‐tosyloxy‐acetophenones, the reactions were more eco‐friendly, the reaction time was significantly reduced and the synthetic procedure was more convenient and easier to manipulate. Surprisingly, using potassium carbonate to displace sodium carbonate in the synthesis of 4 , in the case of 1 (R? CN), two novel cyclocondensation products have been isolated and fully characterized, followed by the proposal of a plausible mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号