首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
The square-wave voltammetric behaviour of cysteine and saccharin was studied at a static mercury drop electrode at pH 7.4 in the presence of Cu(II) ions. In the presence of excess Cu(II), cysteine exhibited three reduction peaks for Hg(SR)2 (−0.086 V), free Cu(II) (−0.190 V) and Cu(I)SR (−0.698 V), respectively. Saccharin produced a catalytic hydrogen peak at −1.762 V. In the presence of Cu(II), saccharin gave a new peak (−0.508 V), corresponding to the reduction of Cu(II)–saccharinate, which in the presence of cysteine formed a mixed ligand complex (−0.612 V), CuL2A2 (L=saccharin and A=cysteine). The peak potentials and currents of the obtained complexes were dependent on the ligand concentration and accumulation time. The stoichiometries and overall stability constants of these complexes were determined by Lingane's method (voltammetrically) and Job’s method (spectrophotometrically). The mixed ligand complex in the molar ratio 1:2:2 (log β=33.35) turned out to be very much stronger than the 1:1 Cu(I)SR (log β=21.64) and 1:2 Cu(II)–saccharinate (log β=16.68) complexes. Formation of a mixed ligand complex can be considered as a type of synergism.  相似文献   

2.
Formation equilibria of copper(II) complexes of 6-aminopenicillanic acid (APA) and the ternary complexes Cu(APA)B (B?=?glycine, alanine, valine, isoleucine, phenylalanine, proline, hydroxyproline, serine, threonine, ornithine, histidine, methionine, glycylglycine and inosine) were investigated at 25°C and 0.1?M ionic strength. The speciation of the complexes was resolved. Values of Δlog?K, log?X and log?βstat indicate a large enhancement of the stability of the mixed ligand complexes. The effects of temperature and organic solvent on the dissociation constant of APA and the formation constant of Cu(APA) were studied and thermodynamic parameters were calculated. The solid complex of Cu(APA)Cl·2H2O was separated and identified by elemental analysis and infrared spectroscopy. In the complex APA is coordinated to copper(II) through the amino group and β-lactam carbonyl oxygen. Absorption spectra of the binary complexes of copper(II) and APA were also investigated.  相似文献   

3.
A method is described for the determination of cystine and cysteine in seawater and freshwater using cathodic stripping voltammetry in the presence of added copper(II). The optimized conditions include a copper concentration of 150 nM, a pH of 8.5, and a collection potential of −0.15 V; the cathodic reduction peak is located at −0.55 V. The detection limit is 0.1 nM after a collection period of 4 min. The sensitivity is diminished by surfactants similar to Triton X-100 in natural waters; the sensitivity therefore needs to be calibrated by internal standard additions of amino acids. It is possible to differentiate between cystine and cysteine by employing a solution pH of 6.2, where the peak due to cystine is absent. The response in seawater is different from that previously reported in buffer solutions. It is shown that the amino acid reduction peak is due to Cu(I) reduction of the adsorbed Cu(I)-cysteinate complex; this complex is formed with Cu(I) generated from dissolved copper(II) at the electrode surface at −0.15 V in the presence of cysteine; cystine is reduced to cysteine at the electrode surface during the collection process.  相似文献   

4.
Ternary complexes of copper(II) with 2-aminomethylthiophenyl-4-bromosalicylaldehyde (ATS) and some amino acids have been isolated and characterized by elemental analyses, IR, magnetic moment, molar conductance, UV–vis, mass spectra, and ESR. The proposed general formulas of the prepared complexes are [Cu(ATS)(AA)]·nH2O (where AA?=?glycine, alanine, and valine). The low molar conductance values suggest the non-electrolytic nature of the complexes. IR spectra show that ATS is coordinated to copper in a bidentate manner through azomethine-N and phenolic-OH. The amino acids also are monobasic bidentate ligands via amino and ionized carboxylate groups. The magnetic and spectral data indicate the square-planar geometry of Cu(II) complexes. The geometry of the Cu(II) complexes has been fully optimized using parameterized PM3 semiempirical method. The Cu–N bond length is longer than that of Cu–O in the isolated complexes. Also, information is obtained from calculations of molecular parameters for all complexes including net dipole moment of the metal complexes, values of binding energy, and lipophilicity value (log P). The antimicrobial activity studies indicate significant inhibitory activity of complex 3 against the selected types of bacteria. The mixed ligand complexes have also been studied in solution state. Protonation constants of ATS and amino acids were determined by potentiometric titration in 50% (v/v) DMSO–water solution at ionic strength of 0.1?M NaCl. ATS has two protonation constants. The binary and ternary complexes of copper(II) involving ATS and some selected amino acids (glycine, alanine, and valine) were examined. Copper(II) forms [Cu(ATS)], [Cu(ATS)2], [Cu(AA)], [Cu(AA)2], and [Cu(ATS)(AA)] complexes. The ternary complexes are formed in a simultaneous mechanism.  相似文献   

5.

Ligand bridged polymeric complexes of the type [M(apainh)(H2O)X] where, M=Mn(II), Co(II), Ni(II), Cu(II), and Zn(II); X=Cl2 or SO4; apainh=acetone p‐amino acetophenone isonicotinoyl hydrazone have been synthesized and characterized. The complexes are stable solids, insoluble in common organic solvents and are non‐electrolytes. Magnetic moments and electronic spectral studies suggest a spin‐free octahedral geometry for all Mn(II), Co(II), Ni(II), and Cu(II) complexes. IR spectra show tridentate nature of the ligand bonding through two >C?N and a >C?O groups. X‐ray powder diffraction parameters for some of the complexes correspond to orthorhombic and tetragonal crystal lattices. Thermal studies (TGA and DTA) of [Mn(apainh)(H2O)SO4] complex show multi‐step decomposition pattern of both an endothermic and exothermic nature. ESR data of Cu(II) chloride complex in solid state show an axial spectra, whereas, Cu(II) sulfate complex is isotropic in nature. The complexes show a significant antifungal activity against a number of pathogenic fungal species and antibacterial activity against Pseudomonas sp. and Clostridium sp. The metal complexes are more active than the ligand.  相似文献   

6.
Solution equilibria of the ternary systems Ni(II)–picolinic acid (Hpic) and the amino acids aspartic acid (H2asp), glutamic acid (H2glu), cysteine (H2cys) and histidine (Hhis), where the amino acids are denoted as H i L, have been studied pH-metrically. The formation constants of the resulting mixed ligand complexes have been determined at 25 °C using a ionic strength 1.0 mol·dm?3 NaCl. In the Ni(II)–Hpic–H2asp and Ni(II)–Hpic–H2glu systems, the complexes [Ni(pic)H2L]+, Ni(pic)HL, [Ni(pic)L]? and [Ni(pic)L(OH)]2? were detected. In the Ni(II)–Hpic–H2cys system the complexes [Ni(pic)H2L]+ and [Ni(pic)L]? are present. Additionally, in the Ni(II)–Hpic–Hhis system the species [Ni(Hpic)HL]2+, Ni(pic)L and [Ni(pic)L(OH)]? were identified. The species distribution diagrams as functions of pH are briefly discussed.  相似文献   

7.
The potentially hexadentate mixed‐donor cage ligand 1‐methyl‐8‐amino‐3,13,16‐trithia‐6,10,19‐triazabicyclo[6.6.6]eicosane (AMME‐N3S3sar; sar=sarcophagine) displays variable coordination modes in a complex with copper(II). In the absence of coordinating anions, the ligand adopts a conventional hexadentate N3S3 binding mode in the complex [Cu(AMME‐N3S3sar)](ClO4)2 that is typical of cage ligands. This structure was determined by X‐ray crystallography and solution spectroscopy (EPR and NIR UV/Vis). However, in the presence of bromide ions in DMSO, clean conversion to a five‐coordinate bromido complex [Cu(AMME‐N3S3sar)Br]+ is observed that features a novel tetradentate (N2S2)‐coordinated form of the cage ligand. This copper(II) complex has also been characterized by X‐ray crystallography and solution spectroscopy. The mechanism of the reversible interconversion between the six‐ and five‐coordinated copper(II) complexes has been studied and the reaction has been resolved into two steps; the rate of the first is linearly dependent on bromide ion concentration and the second is bromide independent. Electrochemistry of both [Cu(AMME‐N3S3sar)]2+ and [Cu(AMME‐N3S3sar)Br]+ in DMSO shows that upon reduction to the monovalent state, they share a common five‐coordinated form in which the ligand is bound to copper in a tetradentate form exclusively, regardless of whether a six‐ or five‐coordinated copper(II) complex is the precursor.  相似文献   

8.
A potentiometric method was used to determine the stability constants for the various complexes of copper(II) with carbamoylcholine chloride (C) drug as a ligand in the presence of some biorelevant amino acid constituents like glycine (Gly), alanine (Ala), valine (Val), proline (Pro), β-phenylalanine (Phe), S-methylcysteine (Met), threonine (Thr), ornithine (Orn), lysine (Lys), histidine (Hisd), histamine (Hist), and imidazole (Imz) as ligands (L). Stability constants of complexes were determined at 25°C and I = 0.10 mol/L NaNO3. The relative stability of each ternary complex was compared with that of the corresponding binary complexes in terms of Δlog K and % R.S. values. Cu(II) complexes of drug C were synthesized in 1:1 and 1:1:1 M ratios of copper to drug [Cu(C)(NO3)2] (1) and copper to drug to glycine[Cu(C)(Gly)(NO3)].NO3 (2), respectively. Glycine ternary complex with drug and copper [Cu(C)(Gly)(NO3)].NO3 was considered as representative amino acid. The complexes 1 and 2 were isolated and characterized using various physicochemical and spectral techniques. Both complexes 1 and 2 were found to have magnetic moments corresponding to one unpaired electron. The possible square planar and square-pyramidal geometries of the copper (II) complexes were assigned on the basis of electron paramagnetic resonance (EPR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), ultraviolet–visible (UV–Vis) and infrared (IR) spectral studies, and the discrete Fourier transform method from DMOL3 calculations. Antioxidant activities of all the synthesized compounds were also investigated.  相似文献   

9.
A new asymmetric Salamo‐based ligand H2L was synthesized using 3‐tertbutyl‐salicylaldehyde and 6‐methoxy‐2‐[O‐(1‐ethyloxyamide)]‐oxime‐1‐phenol. By adjusting the ratio of the ligand H2L and Cu (II), Co (II), and Ni (II) ions, mononuclear, dinuclear, and trinuclear transition metal (II) complexes, [Cu(L)], [{Co(L)}2], and [{Ni(L)(CH3COO)(CH3CH2OH)}2Ni] with the ligand H2L possessing completely different coordination modes were obtained, respectively. The optical spectra of ligand H2L and its Cu (II), Co (II) and Ni (II) complexes were investigated. The Cu (II) complex is a mononuclear structure, and the Cu (II) atom is tetracoordinated to form a planar quadrilateral structure. The Co (II) complex is dinuclear, and the two Co (II) atoms are pentacoordinated and have coordination geometries of distorted triangular bipyramid. The Ni (II) complex is a trinuclear structure, and the terminal and central Ni (II) atoms are all hexacoordinated, forming distorted octahedral geometries. Furthermore, optical properties including UV–Vis, IR, and fluorescence of the Cu (II), Co (II), and Ni (II) complexes were investigated. Finally, the antibacterial activities of the Cu (II), Co (II), and Ni (II) complexes were explored. According to the experimental results, the inhibitory effect was found to be enhanced with increasing concentrations of the Cu (II), Co (II), and Ni (II) complexes.  相似文献   

10.
《Electroanalysis》2004,16(11):955-960
Enantioselective resolution is realized by combining potentiometry with ligand exchange (CE) in a new method called chiral ligand exchange potentiometry (CLEP). A chiral selector, N‐carbobenzoxy‐L ‐aspartic acid (N‐CBZ‐L‐Asp), preferentially recognizes D ‐aspartic acid (D‐Asp) and undergoes ligand exchange with the enantiomeric labile coordination complexes of [Cu(II)(D‐Asp)2] or [Cu(II)(L‐Asp)2] to form a diastereoisomeric complex [(D‐Asp)Cu(II)(N‐CBZ‐L‐Asp)] (a) or [(L‐Asp)Cu(II)(N‐CBZ‐L‐Asp)] (b). Considerable stereoselectivity occurs in the formation of these diastereoisomeric complexes, and their net charges were ?2 (a) and 0 (b), respectively, resulting in different Nernst factor (electrode slope), thus enabling chiral D‐Asp to be distinguished by potentiometry without any pre‐ or postseparation processes.  相似文献   

11.
KHALIL M. M. H.  MASHALY M. M.   《中国化学》2008,26(9):1669-1677
A new series of binary mononuclear complexes were prepared from the reaction of the hydrazone ligand, 2-carboxyphenylhydrazo-benzoylacetone (H2L), with the metal ions, Cd(II), Cu(II), Ni(II), Co(II), Th(IV) and UO2(VI). The binary Cu(II) complex of H2L was reacted with the ligands 1,10-phenanthroline or 2-aminopyridine to form mixed-ligand complexes. The binary complexes of Cu(II) and Ni(II) are suggested to have octahedral configurations. The Cd(II) and Co(II) complexes are suggested to have tetrahedral and/or square-planar geometries, respectively. The Th(IV) and UO2(VI) complexes are suggested to have octahedral and dodecahedral geometries, respectively. The mixed-ligand complexes have octahedral configurations. The structures of all complexes and the corresponding thermal products were elucidated by elemental analyses, conductance, IR and electronic absorption spectra, magnetic moments, 1H NMR and TG-DSC measurements as well as by mass spectroscopy. The ligand and some of the metal complexes were found to activate the enzyme pectinlyase.  相似文献   

12.
A novel route for the synthesis of Cu(II)‐triazolophthalazine complexes using the Cu(II)‐promoted cyclization dehydrogenation reactions of hydrazonophthalazines under reflux was presented. Two hydrazonophthalazines were cyclized to the corresponding triazolophthalazine ligands, 3‐pyridin‐2‐yl‐3,10b‐dihydro‐[1,2,4]triazolo[3,4‐a]phthalazine ( TPP ) and 3‐(3,10b‐dihydro‐[1,2,4]triazolo[3,4‐a]phthalazin‐3‐yl)‐benzoic acid ( TP3COOH ), followed by in situ complexation with Cu(II) yielding six novel Cu(II)‐triazolophthalazine complexes depending on the reaction conditions. The molecular and supramolecular structures of the Cu(II)‐triazolophthalazine complexes were discussed. The metal sites have rectangular pyramidal geometry in the [Cu(TPP)Cl2]2; 1 and [Cu(TP3COOEt)Cl2(H2O)]2; 4 dinuclear complexes, distorted square planar in [Cu(TP3COOMe)2Cl2]; 3 , [Cu(TP3COOH)2Cl2]; 5 and [Cu(TP3COOH)2Cl2]·H2O; 6 and a distorted octahedral in [Cu(TPP)(H2O)2(NO3)2]; 2 . Hirshfeld analysis showed that the O…H, C…H, Cl…H (except TP3COOH and 2 ), N…H and π‐π stacking interactions are the most important intermolecular contacts. The π‐π stacking interactions are the maximum for TP3COOH and complex 6 with net C…C/C…N contacts of 19.4% and 15.4%, respectively. The orbital–orbital interaction energies of the Cu‐N/Cu‐Cl bonds correlated inversely with the corresponding Cu‐N/Cu‐Cl distances, respectively. The charge transfer processes between Cu(II) and ligand groups were also discussed. The charge densities of the Cu(II) centers are reduced to 0.663–0.995 e due to the interactions with the ligand groups coordinating it.  相似文献   

13.
用pH电位法测定了在生理条件下(37℃,I=0.15mol/LNaCl)7-氧杂双环-[2,2,1]庚-5-烯-2,3-二羧酸(OHDA)与各种典型氮基酸和锌、铜生成三元混配配合物的生成常数.模拟计算表明,作为药物配体的OHDA确可影响体内复杂的低分子量金属配合物的平衡,并且扰乱体内锌的分布,改变各种含锌酶的活性和功能.  相似文献   

14.
《Polyhedron》1999,18(8-9):1355-1362
New symmetrical 2,6-bis{N-[2-(2-benzimidazolyl)-phenyl]iminomethyl}-4-methylphenol (L1) and unsymmetrical 2-N-[2-(2-benzimidazoyl)phenyl]iminomethyl-6-[(4-methylpiperazin-1-yl)-methyl]-4-methylphenol (L2) binucleating ligands have been synthesized. Complexation of these ligands with Cu(II) perchlorate and appropriate sodium salt offered the binuclear copper(II) complexes, [Cu2L(X)](ClO4)2, (X=Cl, OH and OAc 1–6). Their spectral, electrochemical and magnetic properties have been studied. Two distinct reduction peaks were observed at negative potentials. The electrochemical data shows that the complexes of L2 undergo reduction at less negative potential (E1pc=−0.15 to −0.25 V, E2pc=−0.45 to −0.65 V) when compared to the complexes of L1 (E1pc=−0.45 to −0.58 V, E2pc=−1.07 to −1.103 V). A variable temperature magnetic study on the complexes of the ligand L1 showed strong antiferromagnetic coupling between the copper atoms (−2J=285–295 cm−1), in contrast, the complexes of the ligand L2 showed weak antiferromagnetic interaction (−2J=60–85 cm−1). Electron spin resonance (ESR) spectra (RT) of the complexes of ligand L1 showed no signal and the complexes of ligand L2 showed a broad feature.  相似文献   

15.
Manganese is involved as a cofactor in the activation of numerous enzymes as well as the oxygen‐evolving complex of photosystem II. Full understanding of the role played by the Mn2+ ion requires detailed knowledge of the interaction modes and energies of manganese with its various environments, a knowledge that is far from complete. To bring detailed insight into the local interactions of Mn in metallopeptides and proteins, theoretical studies employing first‐principles quantum mechanical calculations are carried out on [Mn‐amino acid]2+ complexes involving all 20 natural α‐amino acids (AAs). Detailed investigation of [Mn‐serine]2+, [Mn‐cysteine]2+, [Mn‐phenylalanine]2+, [Mn‐tyrosine]2+, and [Mn‐tryptophan]2+ indicates that with an electron‐rich side chain, the most stable species involves interaction of Mn2+ with carbonyl oxygen, amino nitrogen, and an electron‐rich section of the side chain of the AA in its canonical form. This is in sharp contrast with aliphatic side chains for which a salt bridge is formed. For aromatic AAs, complexation to manganese leads to partial oxidation as well as aromaticity reduction. Despite multisite binding, AAs do not generate strong enough ligand fields to switch the metal to a low‐ or even intermediate‐spin ground state. The affinities of Mn2+ for all AAs are reported at the B3LYP and CCSD(T) levels of theory, thereby providing the first complete series of affinities for a divalent metal ion. The trends are compared with those of other cations for which affinities of all AAs have been previously obtained.  相似文献   

16.
Results are presented for mixed ligand copper(II) complexes of 3,3'-diaminodipropyl-amine and 1,3-diaminopropane studied by electron paramagnetic resonance. The spectra of the complexes in polycrystalline powder form and in frozen solutions of N,N'-dimethyl-formamide indicate that the complexes [Cu(dpt)tn]Cl2·H2O and [Cu(dpt)tn]Br2 have a square based pyramidal CuN5 chromophore and that the complexes [Cu(dpt)tn]I2 and [Cu(dpt)tn](ClO4)2 possess a compressed trigonal bipyramidal CuN5 chromophore.  相似文献   

17.
A new Schiff base ligand (HL) was prepared via a condensation reaction of quinoline‐2‐carboxaldhyde with 2‐aminophenol in a molar ratio of 1:1. Its transition metal mixed ligand complexes with 1,10‐phenanthroline (1,10‐phen) as co‐ligand were also synthesized in a 1:1:1 ratio. HL and its mixed ligand complexes were characterized using elemental analysis, infrared, 1H NMR, mass and UV–visible spectroscopies, molar conductance, magnetic measurements, solid reflectance, thermal analysis, electron spin resonance and X‐ray diffraction. Molar conductance measurements showed that all complexes have an electrolytic nature, except Cd(II) complex. From elemental and spectral data, the formulae [M(L)(1,10‐phen)(H2O)]Clx?nH2O (where M = Cr(III) (x = n = 2), Mn(II) and Ni(II) (x = 1, n = 2), Fe(III) (x = n = 2), Co(II), Cu(II) and Zn(II) (x = 1, n = 2)) and [Cd(L)(1,10‐phen)Cl]?3H2O for the metal complexes have been proposed. The geometric structures of complexes were found to be octahedral. Powder X‐ray diffraction reflected the crystalline nature of the complexes; however, the Schiff base is amorphous. HL and its mixed ligand complexes were screened against Gram‐positive bacteria (Streptococcus pneumoniae and Bacillus subtilis) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli). Antifungal activity was determined against Aspergillus fumigatus and Candida albicans, the data showing that most complexes had activity less than that of the Schiff base while Mn(II), Fe(III) and Ni(II) complexes showed no significant antifungal activity. The anticancer activity of HL and its metal complexes was also studied against breast and colon cell lines. The metal complexes showed IC50 higher than that of HL, especially the Cu(II) complex which showed the highest IC50 against breast cell line.  相似文献   

18.
《中国化学会会志》2017,64(3):261-281
A new Schiff base was prepared from the reaction of 4,4′‐methylenedianiline with 2‐benzoylpyridine in 1:2 molar ratio, as well as its different metal chelates. The structures of the ligand and its metal complexes were studied by elemental analyses, spectroscopic methods (infrared [IR ], ultraviolet–visible [UV –vis], 1H nuclear magnetic resonance [NMR ], electron spin resonance [ESR ]), magnetic moment measurements, and thermal studies. The ligand acts as tetradentate moiety in all complexes. Octahedral geometry was suggested for Mn(II ), Cu(II ), Cr(III ), and Zn(II ) chloride complexes and pentacoordinated structure and square planar geometry for Co(II ), Ni(II ), Cu(NO3 )2, CuBr2 , and Pd(II ) complexes. ESR spectra of copper(II ) complexes ( 4 )–( 6 ) at room temperature display rhombic symmetry for complex ( 4 ) and axial type symmetry for complexes ( 5 ) and ( 6 ), indicating ground state for Cu(II ) complexes. The derivative thermogravimetric (DTG ) curves of the ligand and its metal complexes were analyzed by using the rate equation to calculate the thermodynamic and kinetic parameters, which indicated strong binding of the ligand with the metal ion in some complexes. Also, some of these compounds were screened to establish their potential as anticancer agents against the human hepatic cell line Hep‐G2 . The obtained IC50 value of the copper(II ) bromide complex (4.34 µg/mL ) is the highest among the compounds studied.  相似文献   

19.
Several mixed ligand Ni(II), Cu(II) and Zn(II) complexes of 2-amino-3-hydroxypyridine (AHP) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) have been synthesized and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as by magnetic moment values. On the basis of elemental analysis and molar conductance values, all the complexes can be formulated as [MAB]Cl except histidine complexes as MAB. Thermogravimetric studies reveal the presence of coordinated water molecules in most of the complexes. From the magnetic measurements and electronic spectral data, octahedral structure was proposed for Ni(II) and Cu(II)-AHP-his, tetrahedral for Cu(II)-AHP-him/bim/hist, but square planar for the Cu(II)-AHP complex. The g∥/A∥ calculated supports tetrahedral environment around the Cu(II) in Cu(II)-AHP-him/bim/hist and distorted octahedral for Cu(II)-AHP-his complexes. The morphology of the reported metal complexes was investigated by scanning electron micrographs (SEM). The potentiometric study has been performed in aqueous solution at 37 °C and I=0.15 mol dm(-3) NaClO4. MABH, MAB and MAB2 species has been identified in the present systems. Proton dissociation constants of AHP and stability constants of metal complexes were determined using MINIQUAD-75. The most probable structure of the mixed ligand species is discussed based upon their stability constants. The in vitro biological activity of the complexes was tested against the Gram positive and Gram negative bacteria, fungus and yeast. The oxidative DNA cleavage studies of the complexes were performed using gel electrophoresis method. Cu(II) complexes have been found to promote DNA cleavage in presence of biological reductant such as ascorbate and oxidant like hydrogen peroxide.  相似文献   

20.
This paper describes synthesis, characterization and application of a series of Cu(II) complexes with a novel 3‐thioxo‐[1,2,4,5]tetrazocane‐6,8‐dione (N4) macrocyclic ligand. The complexes were characterized by physicochemical and spectroscopic techniques, such as UV–visible and IR spectroscopies, molar conductance, magnetic susceptibility measurements, and elemental analysis. The data suggest that the mononuclear Cu(II) complexes have a metal‐to‐ligand mole ratio of 1:1 and that the Cu(II) ions are coordinated with the four nitrogen atoms inside the N4 macrocyclic ring. The experimental anisotropic g‐values indicate that the chloro, nitrato, acetate, and perchlorato complexes have six‐coordinate distorted octahedral behavior, whereas the sulfato complex has five‐coordinate square‐pyramidal geometry. A simple and nontoxic method for preparation of CuO nanoparticles based upon the thermal decomposition of the synthesized Cu(II) complexes has been explored. Finally, the degradation of Rhodamine 6G dye by the catalytic performance of nano‐sized CuO material has been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号