首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the excellent biocompatibility and the capability to load and release drugs, ordered mesoporous carbons (OMCs) have been highly prospective and valuable in drug delivery system. In this contribution, synthesis of OMCs with tailored pore sizes from 4.1 to 3.4 nm was achieved by employing SBA‐15 as template and furfuryl alcohol (FA) as carbon precursors. An array of OMCs with controlled structures and morphologies by incipient wetness with FA was analyzed by powder X‐ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), and Raman spectroscopy. The resulting carbon replicas retained the hexagonal symmetry of the silica templates SBA‐15 with p6mm space group, although the framework suffered shrinkage in the replicated process. The pore size distribution, uniformity and pore volume of the mesopores in the OMCs were affected by structural properties of the SBA‐15 templates as shown by N2 sorption and XRD pattern analysis. The process had the advantage that the textural parameters of the obtained OMCs were tunable simply by varying aging temperature of the silica template and the ratio of carbon precursor.  相似文献   

2.
A new dual soft‐template system comprising the asymmetric triblock copolymer poly(styrene‐b‐2‐vinyl pyridine‐b‐ethylene oxide) (PS‐b‐P2VP‐b‐PEO) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to synthesize hollow mesoporous silica (HMS) nanoparticles with a center void of around 17 nm. The stable PS‐b‐P2VP‐b‐PEO polymeric micelle serves as a template to form the hollow interior, while the CTAB surfactant serves as a template to form mesopores in the shells. The P2VP blocks on the polymeric micelles can interact with positively charged CTA+ ions via negatively charged hydrolyzed silica species. Thus, dual soft‐templates clearly have different roles for the preparation of the HMS nanoparticles. Interestingly, the thicknesses of the mesoporous shell are tunable by varying the amounts of TEOS and CTAB. This study provides new insight on the preparation of mesoporous materials based on colloidal chemistry.  相似文献   

3.
Sol‐gel synthesis of silica and silica–tantalum oxide embedded platinum nanoparticles is carried out using Pt colloids as templates. These colloids are prepared by reduction with Na[AlEt3H] and stabilized with different ligands (ammonium halide derivatives, non‐ionic surfactants with polyether chains, and 2‐hydroxy‐propionic acid). The aim of the present study is to prepare mesoporous silica embedded Pt colloids combining the “precursor concept” with the model of catalyst preparation using preformed spheres. Nanoparticles of Pt incorporated in high surface area mesoporous materials are formed after calcination. Further, it is observed that calcination of these catalysts causes partial aggregation and oxidation of the parent colloids, a process that is largely dependent on the nature of the stabilizing ligands. Several methods have been used for characterization of these materials: adsorption‐desorption isotherms at 77 K, H2 chemisorption, X‐ray diffraction(XRD), 29Si and 13C magic angle spinning (MAS) NMR, ammonia diffuse reflectance Fourier transform infrared spectroscopy (NH3‐DRIFT), transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS). It is found that both metal oxide systems exhibit Brønsted acidity (weaker for silica and quite strong for silica–tantalum oxide). In addition, NH3‐DRIFT experiments demonstrate the oxidative properties of the surface. Part of the adsorbed NH4+ species is oxidized to N2O. Testing these catalysts in the reduction of NO and NO2 with isopentane under lean conditions indicate that the activity of these catalysts is indeed dependent on the size of the platinum particles, with those of size 8–10 nm demonstrating the best results. The support likely contributes to this effect, particularly after Ta incorporation into silica.  相似文献   

4.
Hollow-structured mesoporous silica has wide applications in catalysis and drug delivery due to its high surface area, large hollow space, and short diffusion mesochannels. However, the synthesis of hollow structures usually requires sacrificial templates, leading to increased production costs and environmental problems. Here, for the first time, amino-functionalized mesoporous silica hollow spheres were synthesized by using CO2 gaseous bubbles as templates. The assembly of anionic surfactants, co-structure directing agents, and inorganic silica precursors around CO2 bubbles formed the mesoporous silica shells. The hollow silica spheres, 200–400 nm in size with 20–30 nm spherical shell thickness, had abundant amine groups on the surface of the mesopores, indicating excellent applications for CO2 capture, Knoevenagel condensation reaction, and the controlled release of Drugs.  相似文献   

5.
Structurally thermostable mesoporous anatase TiO2 (m‐TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores‐directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high‐angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X‐ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high‐temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye‐sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m‐TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25–m‐TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56 %) in the P25–m‐TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60 %) of the device, compared to DSSCs with a monolayer of P25 as the electrode.  相似文献   

6.
This article reports a novel preparation of wormlike mesoporous silica with 1-hexadecane-3-methylimidazolium bromide (C16MIM)Br, a kind of room-temperature ionic liquids (RTILs), as a template via a sol-gel nanocasting technique. The characterization studies were carried out in contrast with that of the mesoporous silica with cetyltrimethylammonium bromide (CTAB), a usually used template, which has the same alkyl chain length with (C16MIM)Br. The structures of the silica materials have been characterized by Transmission electron microscopy (TEM), High-resolution TEM (HRTEM) and N2 adsorption-desorption measurements. The results show that both the mesoporous materials prepared with different templates respectively can form regular wormlike mesopores with ca. 2 nm in pore diameter. They also have large BET surface areas with narrow size distribution. Compared to the CTAB-template mesoporous silica, the material with (C16MIM)Br as a template has highly uniform pore size and larger surface area. In addition, the formation mechanism of the wormlike mesopores with RTIL has been proposed by an electrostatic charge matching assembly-pathway and steric factor.  相似文献   

7.
The ordered bimodal mesoporous silica MCM-48 spheres were facile synthesized by mild-temperature post-synthesis H2O2 hydrothermal treatment of as-synthesized MCM-48. The results showed that H2O2 is indispensable for simultaneously removing organic templates and forming ordered bimodal mesoporous silica MCM-48 spheres. The bimodal mesoporous MCM-48 was characterized by X-ray diffraction, transmission electron micrographs, FT-IR, and N2 adsorption-desorption, and a possible mechanism was proposed for the formation of bimodal mesoporous MCM-48.  相似文献   

8.
A novel class of nonclassical structures of mesoporous silica, namely a binary nanoparticle mesoporous superlattice (BNMS), is obtained by the assembly of silica nanospheres of different sizes into a binary colloidal crystal. The colloidal crystal has a CrB‐type structure and consists of alternate stacks of unary fcc and binary AlB2‐type structures along the b axis and has four types of interstitial mesopores. The BNMS can be deposited on a substrate by dip coating to form an oriented thin film in which the direction of the superstructure (b axis) is perpendicular to the substrate.  相似文献   

9.
Highly ordered mesoporous niobium‐doped TiO2 with a single‐crystalline framework was prepared by using silica colloidal crystals with ca. 30 nm in diameter as templates. The preparation of colloidal crystals composed of uniform silica nanoparticles is a key to obtain highly ordered mesoporous Nb‐doped TiO2. The XPS measurements of Nb‐doped TiO2 showed the presence of Nb5+ and correspondingly Ti3+. With the increase in the amount of doped Nb, the crystalline phase of the product was converted from rutile into anatase, and the lattice spacings of both rutile and anatase phases increased. Surprisingly, the increase in the amount of Nb led to the formation of plate‐like TiO2 with dimpled surfaces on one side, which was directly replicated from the surfaces of the colloidal silica crystals.  相似文献   

10.
Tailoring metal oxide nanostructures with mesoporous architectures is vital to improve their electrocatalytic performance. Herein, we demonstrate the synthesis of 2D mesoporous Co3O4 (meso‐Co3O4) nanobundles with uniform shape and size by employing a hard‐template method. In this study, the incipient wetness impregnation technique has been chosen for loading metal precursor into the silica hard template (SBA‐15). The results reveal that the concentration of a saturated precursor solution plays a vital role in mesostructured ordering, as well as the size and shape of the final meso‐Co3O4 product. The optimized precursor concentration allows us to synthesize ordered meso‐Co3O4 with four to seven nanowires in each particle. The meso‐Co3O4 structure exhibits excellent electrocatalytic activity for both glucose and water oxidation reactions.  相似文献   

11.
Traditional hard‐template methods for the preparation of mesoporous carbon structures have been well developed, but there are difficulties associated with complete filling of the organic precursors in ordered mesochannels and exact replication of the templates. Herein, mesoporous carbon nanorods (meso‐CNRs) were synthesized through thermal condensation of furfuryl alcohol followed by the nano‐confined decomposition of polyfurfuryl alcohol in silica nanotubes (SiO2 NTs) with porous shells. Limited and slow release of gaseous water through the porous shells and finite polyfurfuryl precursor inside silica nanotubes are responsible for the formation of the mesoporous structures. Nitrogen can be doped into the meso‐CNRs by adding guanidine hydrochloride to the precursors. The nitrogen dopant not only stabilizes the ultrasmall and active Pd nanocatalyst in the meso‐CNRs but also increases the electron density of Pd and accelerates the dissociation of H2, both of which increase the catalytic activity of the Pd catalyst in hydrogenation reactions.  相似文献   

12.
Core–shell‐structured mesoporous silica spheres were prepared by using n‐octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core–shell‐structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double‐layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer–Emmett–Teller (BET) area and larger pore size.  相似文献   

13.
Well-ordered hexagonal mesoporous tungsten trioxide with crystalline pore walls were synthesized at low hydrothermal temperature by using cationic quaternary ammonium gemini surfactants as structure-directing agents and sodium tungstate dihydrate (Na2WO4·2H2O) as a precursor. The effects of alkyl chain length of gemini surfactants, hydrothermal temperature and molar ratio of tungsten to gemini surfactants have been investigated in detail. The strong self-assembly ability of gemini surfactants, strong electrical interaction between gemini surfactants and tungsten trioxide, and solvent extraction strategy contributed together to the coexistence of WO3 mesostructures and crystalline pore walls.  相似文献   

14.
Highly ordered mesoporous Co3O4 nanostructures were prepared using KIT‐6 and SBA‐15 silica as hard templates. The structures were confirmed by small angle X‐ray diffraction, high resolution transmission electron microscopy, and N2 adsorption–desorption isotherm analysis. Both KIT‐6 cubic and SBA‐15 hexagonal mesoporous Co3O4 samples exhibited a low Néel temperature and bulk antiferromagnetic coupling due to geometric confinement of antiferromagnetic order within the nanoparticles. Mesoporous Co3O4 electrode materials have demonstrated the high lithium storage capacity of more than 1200 mAh g?1 with an excellent cycle life. They also exhibited a high specific capacitance of 370 F g?1 as electrodes in supercapacitors.  相似文献   

15.
This paper presents a facile and low-cost strategy for fabrication lysozyme-loaded mesoporous silica nanotubes (MSNTs) by using silk fibroin (SF) nanofiber templates. The “top-down method” was adopted to dissolve degummed silk in CaCl2/ formic acid (FA) solvent, and the solution containing SF nanofibrils was used for electrospinning to prepare SF nanofiber templates. As SF contains a large number of -OH, -NH2 and -COOH groups, the silica layer could be easily formed on its surface by the Söber sol-gel method without adding any surfactant or coupling agent. After calcination, the MSNTs were obtained with inner diameters about 200 nm, the wall thickness ranges from 37 ± 2 nm to 66 ± 3 nm and the Brunauer–Emmett–Teller (BET) specific surface area was up to 200.48 m2/g, the pore volume was 1.109 cm3/g. By loading lysozyme, the MSNTs exhibited relatively high drug encapsulation efficiency up to 31.82% and an excellent long-term sustained release in 360 h (15 days). These results suggest that the MSNTs with the hierarchical structure of mesoporous and macroporous will be a promising carrier for applications in biomacromolecular drug delivery systems.  相似文献   

16.
Mesoporous precious metals with abundant active sites and high surface area have been widely recognized as high‐performance catalytic materials. However, the templated synthesis is complex and costly. Herein, we report a mesoporous rhodium (m‐Rh) that can be readily synthesized from entangled nanofibres of Rh and Y2O3 without templates. The entangled nanofibres, prepared from uniform Rh‐Y alloys under redox atmosphere, were the key precursor in the synthesis processes. Moreover, the m‐Rh efficiently catalyzed carbon dioxide reforming of methane (DRM) at a low reaction temperature of 683 K. Further, electrochemical methods of CO electro‐oxidation were innovatively used to demonstrate the stability of CO and oxygen species for the DRM reaction.  相似文献   

17.
We review recent developments in the preparation of mesoporous metals and related metal‐based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore‐size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct‐template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct‐template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal‐based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.  相似文献   

18.
This article reports a novel preparation of mesoporous silica with series of 1-alky-3-methylimidazolium bromide (CnMIM)Br (n = 12, 14, 16), a kind of amphiphilic room-temperature ionic liquids (RTILs), as a template via a sol-gel nanocasting technique. The pore morphology and structures of these mesoporous silica were characterized by Transmission electron microscopy (TEM). The results show that the RTIL bearing longer alkyl chain is preferred to form the mesoporous silica material with bigger pores. (C16MIM)Br has been chosen to study how the various influencing factors affect the synthesis and structure of the mesoporous silica material, such as the acid concentration, the solling time, the gelling time and the calcination time. N2 adsorption-desorption isotherms measurement was used to characterize the pore size distribution and BET surface area. The results indicate that all of the factors can make an influence on the preparation of the mesoporous silica, which is more sensitive to the concentration of the acid.  相似文献   

19.
Mesoporous silica KIT-6 has novel three-dimensional gyroidal channel structure, space group of 1a-3d, and ordered tunable pores up to 10 nm. In this paper, such mesostructured silica was employed as hard template to prepare semicrystalline gyroidal mesoporous MnO2. The structure was investigated by XRD, TEM and HRTEM, and found to be of high quality 1a-3d symmetry, in good accordance with the template structure. The material has a BET surface of 118 m2·g^-1 and pore volume of 0.35 cm3·g^- 1 after eliminating template. Mesoporous MnO2 has shown good electrochemical property as supercapacitor material in 1 mol·L^-1 Na2SO4 and 1 mol·L^-1 LiClO4 solutions, but interesting pseudocapacitance behavior was observed in the case of 6 mol·L^-1 KOH. It was found that mesoporous MnO2 performed stable reversible electrochemical behavior with capacitance of 220 F·g^-1 in a potential range of -0.1-0.55 V vs. Hg/HgO in alkaline solution, demonstrating that it is a promising novel electrode material for the fabrication of electrochemical capacitors.  相似文献   

20.
Mesoporous silica thin films encapsulating a molecular iron‐triazole complex, Fe(Htrz)3 (Htrz=1,2,4,‐1H‐triazole), have been generated by electrochemically assisted self‐assembly (EASA) on indium‐tin oxide (ITO) electrode. The obtained modified electrodes are characterized by well‐defined voltammetric signals corresponding to the FeII/III centers of the Fe(Htrz)3 species immobilized into the films, indicating fast electron transfer processes and stable operational stability. This is due to the presence of a high density of redox probes in the material (1.6×10?4 mol g?1 Fe(Htrz)3 in the mesoporous silica film) enabling efficient charge transport by electron hopping. The mesoporous films are uniformly deposited over the whole electrode surface and they are characterized by a thickness of 110 nm and a wormlike mesostructure directed by the template role played by Fe(Htrz)3 species in the EASA process. These species are durably immobilized in the material (they are not removed by solvent extraction). The composite mesoporous material (denoted Fe(Htrz)3@SiO2) is then used for the electrocatalytic detection of hydrogen peroxide, which can be performed by amperometry at an applied potential of ?0.4 V versus Ag/AgCl and by flow injection analysis. The organic‐inorganic hybrid film electrode displays good sensitivity for H2O2 sensing over a dynamic range from 5 to 300 μM, with a detection limit estimated at 2 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号