首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel ionic‐liquid‐functionalized Fe3O4 magnetic nanoparticles were synthesized by the thiol‐ene click reaction. The prepared functionalized Fe3O4 nanoparticles possessed multiple interactions, such as electrostatic, hydrophobic, and π–π interactions. The functionalized Fe3O4 nanoparticles were characterized by using Fourier transform infrared spectroscopy, X‐ray diffraction, vibrating sample magnetometry, and transmission electron microscopy. Four kinds of linear alkylbenzene sulfonates, namely, sodium decylbenzenesulfonate, sodium undecylbenzene sulfonate, sodium dodecylbenzenesulfonate, and sodium tridecylbenzenesulfonate, were selected as model compounds to evaluate the applicability of adsorbents for extraction and subjected to high‐performance liquid chromatography analysis. In addition, the effects of various parameters, such as sorbent amount, pH value, ionic strength, sample volume, extraction time, and elution conditions on extraction efficiency were studied in detail. Under the optimum conditions, good linearities were attained, with correlation coefficients between 0.9912 and 0.9968. The proposed method exhibited limits of detection ranging from 0.061 to 0.099 μg/L for all the target analytes. The spiked recoveries of the target analytes in real water samples ranged from 86.3 to 107.5%, with relative standard deviations lower than 7.96%. The enrichment factors of the analytes ranged from 364 to 391, indicating that the obtained functionalized Fe3O4 nanoparticles can effectively extract trace target analytes from environmental water samples.  相似文献   

2.
A novel and simple supported ionic‐liquid‐based solid‐phase extraction method for the determination of triazine herbicides in rice was developed. Glass slides were functionalized by an ionic liquid, 1‐carboxyethyl‐3‐methylimidazolium chloride, and were used for the simultaneous extraction of seven triazine herbicides in rice samples. The effects of the type of extraction solvent, the extraction time, the type and volume of loading solvent, and the type of eluting solvent on the extraction efficiency were investigated and optimized. Under the optimum operation conditions, the limits of detection for seven triazine herbicides in rice samples obtained by high‐performance liquid chromatography were 3.16–5.42 ng/g, which were lower than the maximum residue levels established by various organizations. The linear correlation coefficients were higher than 0.9975 in the concentration range of 0.015–1.08 μg/g for the seven triazine herbicides. The recoveries of the seven triazine herbicides at the two concentration levels of 0.15 and 0.45 μg/g are between 82.47 and 104.21%, with relative standard deviations of 0.69–9.19%. The intra‐ and inter‐day (n = 5) precisions for all triazine herbicides at the spiked level of 0.30 μg/g were 1.72–11.71%.  相似文献   

3.
A novel microextraction method, termed microwave‐assisted ionic liquid/ionic liquid dispersive liquid–liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high‐performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1‐hexyl‐3‐methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1‐hexyl‐3‐methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1‐butyl‐3‐methylimidazolium tetrafluoroborate. In addition, an ion‐pairing agent (NH4PF6) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00–250.00 μg/L, with the correlation coefficients of 0.9982–0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7–105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples.  相似文献   

4.
In recent years, the use of human saliva for diagnostic purposes has evoked great interest. Thus, the aim of this study was to choose the optimal solid‐phase extraction cartridges and extraction solvents for the quantitation of venlafaxine in saliva. Blank saliva samples spiked with venlafaxine concentrations between 25 and 750 ng/mL were analyzed using five solid‐phase extraction columns (C18, C8, Strata‐X, Strata‐X‐C, and Strata‐X‐AW), washing solvents (deionized water, phosphate buffer at pH 5.5, and their mixtures with methanol), and elution solvents (methanol, acetonitrile, and their mixtures with 25% ammonia). A high‐performance liquid chromatography system was used to quantify venlafaxine in saliva. The results of this study revealed that nine of 25 procedures enabled quantitation of venlafaxine in the tested concentration range. The procedure that used a C18 cartridge, a mixture of methanol and deionized water as the washing solvent, and methanol as the elution solvent was the most effective and allowed quantitation of all venlafaxine concentrations with an acceptable recovery. In contrast, the Strata‐X‐C cartridge could not detect venlafaxine at the lowest concentration (25 ng/mL). The data acquired from the high‐performance liquid chromatography system were confirmed by a multivariate data analysis.  相似文献   

5.
Microwave‐assisted ionic‐liquid‐impregnated resin solid–liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic‐liquid‐impregnated resin was prepared by immobilizing 1‐hexyl‐3‐methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box–Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples.  相似文献   

6.
A novel two‐step extraction technique combining ionic‐liquid‐based dispersive liquid–liquid microextraction with magnetic solid‐phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high‐performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1‐octyl‐3‐methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid–liquid microextraction, and hydrophobic pelargonic acid modified Fe3O4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins‐containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid–liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid–liquid microextraction and magnetic solid‐phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3–103.7% with relative standard deviations of 3.2–6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B1, B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns.  相似文献   

7.
Microcystins (MCs), produced by freshwater cyanobacteria, can be serious water pollutants, so it is important to monitor their concentration in drinking water. We have developed a method for rapid and accurate determination of microcystin levels in environmental water, using magnetic solid‐phase extraction and high‐performance liquid chromatography with UV detection. The magnetic composite material, which was combined with cetylpyridinium chloride, was prepared by hydrothermal synthesis. The optimal extraction of microcystins in water sample was achieved by optimizing the amount of adsorbent, time of adsorption, ratio of eluting solvent, and volume of eluent. Under the optimal conditions, the limit of detection of MC‐LR was 0.001 μg/L, and the limit of quantification was 0.0028 μg/L. The limit of detection of MC‐RR was 0.001 μg/L, and the limit of quantification was 0.003 μg/L. These values are far lower than those established by the International Health Organization for the maximum concentration of microcystins in drinking water. The magnetic solid‐phase extraction adsorbent used in this method has the advantages of simple preparation, low price, and easy solid–liquid separation, and it can be used for the rapid and sensitive monitoring of trace microcystins in environmental water samples.  相似文献   

8.
Matrix solid‐phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High‐performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid‐phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid‐phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion‐pairing agent (NH4PF6), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3–13.4 μg/kg.  相似文献   

9.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

10.
A graphene oxide reinforced polymeric ionic liquids monolith was obtained by copolymerization of graphene oxide doped 1‐(3‐aminopropyl)‐3‐(4‐vinylbenzyl)imidazolium 4‐styrenesulfonate monomer and 1,6‐di‐(3‐vinylimidazolium) hexane bihexafluorophosphate cross‐linking agent. Coupled to high‐performance liquid chromatography, the monolith was used as a solid‐phase microextraction sorbent to analyze several phenolic compounds in aqueous samples. Under the optimized extraction and desorption conditions, linear ranges were 5–400 μg/L for 3‐nitrophenol, 2‐nitrophenol, and 2,5‐dichlorophenol and 2–400 μg/L for 4‐chlorophenol, 2‐methylphenol, and 2,4,6‐trichlorophenol (R2 = 0.9973–0.9988). The limits of detection were 0.5 μg/L for 3‐nitrophenol and 2‐nitrophenol and 0.2 μg/L for the rest of the analytes. The proposed method was used to determine target analytes in groundwater from an industrial park and river water. None of the analytes was detected. Relative recoveries were in the range of 75.5–113%.  相似文献   

11.
Two extraction procedures, matrix solid‐phase dispersion and hollow fiber liquid‐phase microextraction, were combined and applied to determine triazine herbicides in peanut samples. The results showed that the established method has high extraction efficiency and could greatly eliminate the interferences from complex matrix samples. A series of important experimental parameters were all investigated in detail. Under the optimal conditions, the developed method has the limits of detection for triazine herbicides in the range of 0.05 to 1.71 μg/kg. Moreover, it has the recovery in the range of 80.4–120.0% with relative standard deviations of equal or lower than 8.9%. The established method may have a great potential in separation, enrichment, and purification of triazines from complex fatty solid samples.  相似文献   

12.
A novel dispersive admicelle solid‐phase extraction method based on sodium dodecyl sulfate‐coated Fe3O4 nanoparticles was developed for the selective adsorption of berberine, coptisine, and palmatine in Gegen‐Qinlian oral liquid before high‐performance liquid chromatography. Fe3O4 nanoparticles were synthesized by a chemical coprecipitation method and characterized by using transmission electron microscopy. Under acidic conditions, the surface of Fe3O4 nanoparticles was coated with sodium dodecyl sulfate to form a nano‐sized admicelle magnetic sorbent. Owing to electrostatic interaction, the alkaloids were adsorbed onto the oppositely charged admicelle magnetic nanoparticles. The quick separation of the analyte‐adsorbed nanoparticles from the sample solution was performed by using Nd‐Fe‐B magnet. Best extraction efficiency was achieved under the following conditions: 800 μL Fe3O4 nanoparticles suspension (20 mg/mL), 150 μL sodium dodecyl sulfate solution (10 mg/mL), pH 2, and vortexing time 2 min for the extraction of alkaloids from 10 mL of diluted sample. Four hundred microliters of methanol was used to desorb the alkaloids by vortexing for 1 min. Satisfactory extraction recoveries were obtained in the range of 85.9–120.3%, relative standard deviations for intra‐ and interday precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied to analyze the alkaloids in two batches of Gegen‐Qinlian oral liquids.  相似文献   

13.
Iron nanoparticles were prepared by a green method following functionalization using 1‐butyl‐3‐methylimidazolium bromide. 1‐Butyl‐3‐methylimidazole iron nanoparticles were characterized using FTIR spectroscopy, energy dispersive X‐ray fluorescence, X‐ray diffraction, scanning electron microscopy and transmission electron microscopy. The nanoparticles were used in solid‐phase membrane micro‐tip extraction to separate vitamin B complex from plasma before high‐performance liquid chromatography. The optimum conditions obtained were sorbent (15 mg), agitation time (30 min), pH (9.0), desorbing solvent [water (5 mL) + methanol (5 mL) + sodium hydroxide (0.1 N) + acetic acid (d = 1.05 kg/L, pH 5.5), desorbing volume (10 mL) and desorption time (30 min). The percentage recoveries of all the eight vitamin B complex were from 60 to 83%. A high‐performance liquid chromatography method was developed using a PhE column (250 × 4.6 mm, 5.0 μm) and water/acetonitrile (95:5, v/v; pH 4.0 with 0.1% formic acid) mobile phase. The flow rate was 1.0 mL/min with detection at 270 and 210 nm. The values of the capacity, separation and resolution factor were 0.57–39.47, 1.12–6.00 and 1.84–26.26, respectively. The developed sample preparation and chromatographic methods were fast, selective, inexpensive, economic and reproducible. The developed method can be applied for analyzing these drugs in biological and environmental matrices.  相似文献   

14.
A method of reversed‐phase ion‐pair solid‐phase extraction combined with ion chromatography for determination of pyrrolidinium ionic liquid cations (N‐methyl‐N‐ethyl pyrrolidinium, N‐methyl‐N‐propyl pyrrolidinium, and N‐methyl‐N‐butyl pyrrolidinium) in water samples was developed in this study. First, ion‐pair reagent sodium heptanesulfonate was added to the water samples after static, centrifugation and filteration. Then, pyrrolidinium cations in the samples were enriched and purified by a reversed‐phase solid‐phase extraction column, and eluted from the column with methanol aqueous solution as eluent. Finally, the eluate collected was analyzed by ion chromatography. The separation and direct conductivity detection of these pyrrolidinium cations by ion‐exchange column using 1.0 mM methanesulfonic acid (in water)/acetonitrile (97:3, v:v) as mobile phase was achieved within 10 min. By using this method, pyrrolidinium cations in Songhua River and Hulan River were successfully extracted with the recoveries ranging from 74.2 to 97.1% and the enrichment factor assessed as 60. Pyrrolidinium cations with the concentration of 0.001?0.03 mg/L can be enriched and detected in the water samples. The developed method for the determination of pyrrolidinium ionic liquid cations in water samples is simple and reliable, which provides a reference for the study of the potential impact of ionic liquids on the environment.  相似文献   

15.
The separation of a compound of interest from its structurally similar homologues to produce high‐purity natural products is a challenging problem. This work proposes a novel method for the separation of iristectorigenin A from its structurally similar homologues by ionic‐liquid‐based ultrasound‐assisted extraction and the subsequent screening and isolation of potential α‐glucosidase inhibitors via ultrafiltration and semipreparative high‐performance liquid chromatography. Ionic‐liquid‐based ultrasound‐assisted extraction was successfully applied to the extraction of tectorigenin, iristectorigenin A, irigenin, and irisflorentin from Belamcanda chinensis . The optimum conditions for the efficient extraction of isoflavones were determined as 1.0 M 1‐ethyl‐3‐methylimidazolium tetrafluoroborate with extraction time of 30 min and a solvent to solid ratio of 30 mL/g. Ultrafiltration with liquid chromatography and mass spectrometry was applied to screen and identify α‐glucosidase inhibitors from B. chinensis , followed by the application of semipreparative high‐performance liquid chromatography to separate and isolate the active constituents. Four major compounds including tectorigenin, iristectorigenin A, irigenin, and irisflorentin were screened and identified as α‐glucosidase inhibitors, and then the four active compounds abovementioned were subsequently isolated by semipreparative high‐performance liquid chromatography (99.89, 88.97, 99.79, and 99.97% purity, respectively). The results demonstrate that ionic liquid extraction can be successfully applied to the extraction of isoflavones from B. chinensis .  相似文献   

16.
Stainless‐steel wires coated with mesoporous titanium oxide were placed into a polyether ether ketone tube for in‐tube solid‐phase microextraction, and the coating sorbent was characterized by X‐ray diffraction and scanning electron microscopy. It was combined with high‐performance liquid chromatography to build an online system. Using eight polycyclic aromatic hydrocarbons as the analytes, some conditions including sample flow rate, sample volume, organic solvent content, and desorption time were investigated. Under optimum conditions, an online analysis method was established and provided good linearity (0.03–30 μg/L), low detection limits (0.01–0.10 μg/L), and high enrichment factors (77.6–678). The method was applied to determine target analytes in river water and water sample of coal ash, and the recoveries are in the range of 80.6–106.6 and 80.9–103.5%, respectively. Compared with estrogens and plasticizers, extraction coating shows better extraction efficiency for polycyclic aromatic hydrocarbons.  相似文献   

17.
Ionic liquids immobilized on magnetic nanoparticles were prepared by an efficient microwave‐assisted synthesis method, and the properties of the ionic liquids were tuned based on the aromatic functional modification of its anion through a simple metathesis reaction. The novel as‐synthesized magnetic materials were characterized by various instrumental techniques. The magnetic nanoparticles have been utilized as adsorbents for the extraction of four sulfonylurea herbicides in tea samples, in combination with high‐performance liquid chromatography analysis. Significant extraction parameters, including type and volume of desorption solvent, extraction time, amount of adsorbent, and ionic strength were investigated. Under the optimum conditions, good linearity was obtained in the concentration range of 1–150 μg/L for metsulfuron‐methyl and bensulfuron‐methyl, and 3–150 μg/L for sulfometuron‐methyl and chlorimuron‐ethyl, with correlation coefficients R2 > 0.9987. Low limits of detection were obtained ranging from 0.13 to 0.81 μg/L. The relative standard deviations were 1.8–3.9%. Comparisons of extraction efficiency with conventional solid‐phase extraction equipped with a commercial C18 cartridge were performed. Results indicated that magnetic solid‐phase extraction is simple, time‐saving, efficient and inexpensive with the reusability of adsorbents. The proposed method has been successfully used to determine sulfonylurea herbicides from tea samples with satisfactory recoveries of 80.5–104.2%.  相似文献   

18.
The herbicides in naked oat (Avena nuda L.) samples were extracted, separated, and determined by using ionic‐liquid‐based matrix solid‐phase dispersion‐solvent flotation coupled with high‐performance liquid chromatography. The experimental parameters were optimized and evaluated by a univariate method and orthogonal experiment. A good linear relationship was obtained in the range of 5–5000 µg/kg, and the linear correlation coefficient are between 0.9989~0.9993. The quantification limits for alachlor, metazachlor, propanil, acetochlor, pretilachlor, metolachlor, and butachlor are 5.03, 2.62, 2.73, 4.58, 7.28, 5.05, 5.78 µg/kg, respectively. The average recoveries of the acetanilide herbicides at spiked concentrations of 10, 100, and 500 µg/kg ranged from 92.1 to 104.7%, and relative standard deviations were equal to or lower than 2.9%.  相似文献   

19.
Basalt fibers were functionalized with gold nanoparticles and characterized by scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. An in‐tube solid‐phase microextraction device was developed by packing the functionalized basalt fibers in a polyether ether ketone tube. The device was connected into high performance liquid chromatography equipment with a diode array detector to build online enrichment and analysis system. Eight polycyclic aromatic hydrocarbons were used as model analytes, important factors including sampling rate, sampling volume, organic solvent content in sample, and desorption time were investigated. Linear range (0.01–20 μg/L), detection limits (0.003–0.015 μg/L), and enrichment factors (130–1628) were given by the online analysis method. Relative standard deviations (= 5) of extraction repeatability on one tube and tube‐to‐tube repeatability were less than 5.2 and 14.7%, respectively. The analysis method was applied to detect polycyclic aromatic hydrocarbons in environmental water samples, and relative recoveries ranged from 87 to 128%.  相似文献   

20.
An aptamer (Apt) functionalized magnetic material was prepared by covalently link Apt to Fe3O4/graphene oxide (Fe3O4/GO) composite by 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride and N‐hydroxysuccinimide, and then characterized by FTIR spectroscopy, X‐ray diffraction, and vibration sample magnetometry. The obtained composite of Fe3O4/GO/Apt was employed as magnetic solid‐phase extraction adsorbent for the selective preconcentration of sulfadimethoxine prior to analysis by high‐performance liquid chromatography. Under the optimal conditions (sample pH of 4.0, sorbent dosage of 20 mg, extraction time of 3 h, and methanol‐5% acetic acid solution as eluent), a good linear relationship was obtained between the peak area and concentration of sulfadimethoxine in the range of 5.0 to 1500.0 µg/L with correlation coefficient of 0.9997. The limit of detection (S/N = 3) was 3.3 µg/L. The developed method was successfully applied to the analysis of sulfadimethoxine in milk with recoveries in the range of 75.9‐92.3% and relative standard deviations less than 8.1%. The adsorption mechanism of Fe3O4/GO/Apt toward sulfadimethoxine was studied through the adsorption kinetics and adsorption isotherms, and the results show that the adsorption process fits well with the pseudo‐second‐order kinetic model and the adsorbate on Fe3O4/GO/Apt is multilayer and heterogeneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号