首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
This paper discusses a new electrochemical DNA hybridization sensing approach based on the detection of a linked enzyme label. In this method we employ enzyme that is attached to a tethered ssDNA oligomer on the surface and the target analyte is a complementary ssDNA oligomer that does not require any pre‐treatment. The advantage of using of enzyme label is in its amplification of the registration of the hybridization event due to the catalytic reaction facilitated in the process. One particular novelty is associated with the use of enzymes that directly communicate with the electrode surface thus allowing for minimizing the need of additional reagents in the assay. The electrochemical assay was demonstrated when using mixed self‐assembled monolayers from thiolated oligonucleotide and 6‐mercapto 1‐hexanol on gold surfaces. Horseradish peroxidase (HRP) is attached to the surface tethered oligonucleotide using streptavidin‐biotin chemistry, and the enzyme successfully established direct electron transfer (DET) with the electrode or mediated electron transfer (MET) using a mediator. Hybridization results in increasing the angle of contact between electrode and DNA and also the stiffness of the ds DNA, which results in displacing the enzyme away from the electrode surface, and thereby reducing the occurrence of direct electron transfer between the enzyme and the electrode. The cyclic voltammetry showed a clear distinction in response between the complete complementary sequence and the two‐base mismatch sequence. Ellipsometric measurements show that the thickness of the thiol modified oligonucleotide on gold surfaces changes before and after hybridization for the complementary sequence, where as a minimal change in thickness was observed for the noncomplementary sequence. The model target analyte in this study was TP53 gene where a specific mutation is a marker for a list of cancers. Mutations of the TP53 gene have been demonstrated in tumors of the colon, breast, lung, ovary, bladder, and many other organs. Analysis of p53 mutations may provide useful information for the diagnosis, prognosis and therapy of cancer.  相似文献   

2.
3.
4.
5.
A new organotin complex derived from propyl gallate and 1,10‐phenanthroline was designed, synthesized and characterized using spectroscopic and elemental analytical methods. The underlying mechanisms of the anticancer action of the tin complex were further elucidated by evaluating its in vitro DNA interaction and the regulating signaling pathways. Our results showed that the tin complex could effectively activate DNA strand breaks in MCF‐7 cells in a dose‐dependent manner after cellular internalization. Phosphorylation of a DNA damage marker, histone H2A.X (Ser139), was thus upregulated in treated cells. Additionally, our results indicate that p53 is phosphorylated in response to DNA damage, and that this phosphorylation may be involved in the subsequent induction and activation of p53. In vitro DNA binding of the complex in Tris–HCl buffer was studied using various biophysical methods, revealing that the tin complex binds to DNA non‐covalently via electrostatic interaction. The higher Kb value of the complex suggested greater DNA binding propensity. Further, to evaluate the mode of action at the molecular level, interaction studies of the tin complex with nucleotide (5′‐GMP) were carried out. The complex exhibits DNA cleavage activity with supercoiled pBR322 in the presence of different activators. The complex cleaves DNA efficiently via oxidative cleavage pathway. Molecular docking studies were performed to understand the binding mode of the tin complex with DNA (PDB ID: 1BNA).  相似文献   

6.
Scanning electrochemical microscopy (SECM) was employed for sensitive detection of single base mismatches (SBMs) in a sandwiched dsDNA. Ferrocenecarboxylic acid (Fc), covalently conjugated to the dsDNA, was oxidized to Fc+ via the DNA‐mediated charge transfer from the underlying gold substrate, and reduced back to Fc by SECM tip generated ferrocyanide. The electrocatalytic oxidation of SECM tip‐generated ferrocyanide was sensitive to presence, as well as the type of SBMs. Apparent standard rate constants (k0app) values for different SBMs, both near the electrode surface and far from it, were evaluated by SECM. The method can detect SBMs independent of their position in dsDNA.  相似文献   

7.
众所周知,插入剂的DNA特性结合位点位于DNA碱基对之间,然而这种非共价相互作用对于含脱碱基(AP)位点的DNA来讲还没有引起足够的重视,虽然在生物细胞中总是存在着DNA脱碱基位点。本文以原黄素(proflavine,PF)为例研究了插入剂对DNA中AP位点的结合特性。实验结果表明,相对于插入位点而言,AP位点是PF的优先结合位点,AP位点的本征结合常数比插入结合常数高一个数量级以上。此外,PF的结合使含脱碱基位点DNA的热稳定性明显提高,表明PF在脱碱基位点的结合构像明显不同于插入结合时的分子定向。本文结果将有助于判断小分子的DNA结合方式所决定的药物的生物化学及生物物理效用。  相似文献   

8.
9.
The interaction of human Rad51 protein (HsRad51) with single‐stranded deoxyribonucleic acid (ssDNA) was investigated by using quartz crystal microbalance (QCM) monitoring and atomic force microscopy (AFM) visualization. Gold surfaces for QCM and AFM were modified by electrografting of the in situ generated aryldiazonium salt from the sulfanilic acid to obtain the organic layer Au–ArSO3H. The Au–ArSO3H layer was activated by using a solution of PCl5 in CH2Cl2 to give a Au–ArSO2Cl layer. The modified surface was then used to immobilize long ssDNA molecules. The results obtained showed that the presence of adenosine diphosphate promotes the protein autoassociation rather than nucleation around DNA. In addition, when the BRC4‐28 peptide inhibitor was used, both QCM and AFM confirmed the inhibitory effect of BRC4‐28 toward HsRad51 autoassociation. Altogether these results show the suitability of this modified surface to investigate the kinetics and structure of DNA–protein interactions and for the screening of inhibitors.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号