共查询到20条相似文献,搜索用时 0 毫秒
1.
Ag/WO3纳米复合膜的制备及其电致变色性质和器件的研究 总被引:1,自引:0,他引:1
通过真空镀膜方法制备的纳米Ag薄膜均匀致密, 表面光滑. 然后通过电化学方法在Ag纳米薄膜上沉积一层三氧化钨(WO3), 制备纳米Ag/WO3复合膜. 并在此基础上构筑五层式玻璃/ITO/纳米Ag-WO3复合膜/固态电解质/聚(3-甲基噻吩)/ITO/玻璃电致变色器件. 实验结果表明, 与传统的WO3膜相比, 纳米Ag/WO3复合膜具有更好的电化学活性、更高的对比度、更短的响应时间, 以及更好的稳定性. 由该复合膜组装的电致变色器件工艺简单, 电致变色性能良好. 相似文献
2.
The light-to-electricity conversion process of the TiO2 nanostructured electrode sensitized by a dye was investigated using the photoelectrochemical method in this paper. At the same time, the WO3 thin film was electrodeposited on conducting glass. The results showed that the dye-sensitized nanoporous TiO2 film has the properties of energy conversion, along with good electrochromic properties of electrodeposited MoO3 thin film. A self-powered smart window was achieved by combining a dye-sensitized nanoporous TiO2 film as the photovoltaic layer and an electrodeposited WO3 film as the electrochromic layer. This window changed from being almost transparent to blue spontaneously under illumination, and thus could modulate light transmittance. 相似文献
3.
The preparation of electrochromic films of mesoporous tungsten trioxide from tungstic acid and tungstic hexaethoxide precursors with the addition of an organic stabiliser via a sol-gel method is reported. These films have been structurally characterised and both the film morphology and crystalline composition of the films were found to be significantly dependent on the temperature at which the films were annealed and upon the choice of precursor. Films annealed at lower temperatures consisted of amorphous and hexagonal tungsten trioxide, whereas films annealed above 500 °C comprised solely of monoclinic WO3. The electrochromic activity of the films was found to be equally dependent on method of preparation, and both the composition and the structure of the WO3 films were shown to clearly influence the colouration efficiency of the films.Dedicated to Zbigniew Galus on the occasion of his 70th birthday. 相似文献
4.
5.
Yang He Meng Gu Haiyan Xiao Langli Luo Yuyan Shao Fei Gao Yingge Du Scott X. Mao Chongmin Wang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2016,128(21):6352-6355
Intercalation and conversion are two fundamental chemical processes for battery materials in response to ion insertion. The interplay between these two chemical processes has never been directly seen and understood at atomic scale. Here, using in situ HRTEM, we captured the atomistic conversion reaction processes during Li, Na, Ca insertion into a WO3 single crystal model electrode. An intercalation step prior to conversion is explicitly revealed at atomic scale for the first time for Li, Na, Ca. Nanoscale diffraction and ab initio molecular dynamic simulations revealed that after intercalation, the inserted ion–oxygen bond formation destabilizes the transition‐metal framework which gradually shrinks, distorts and finally collapses to an amorphous W and MxO (M=Li, Na, Ca) composite structure. This study provides a full atomistic picture of the transition from intercalation to conversion, which is of essential importance for both secondary ion batteries and electrochromic devices. 相似文献
6.
Improving surface structure of photocatalytic self‐cleaning membrane by WO3/PANI nanoparticles 下载免费PDF全文
To create a self‐cleaning feature and improve antifouling property, polysulfone (PSf) membranes were modified with WO3 and polyaniline (PANI) nanoparticles (0–2 wt%) via phase inversion method for ultrafiltration of landfill leachate. The mass ratio of WO3 nanoparticles was varied between 0, 40 and 60 wt% in different loadings. All synthesized membranes were tested with and without UV irradiation to evaluate the self‐cleaning feature. The synthesized PANI was analyzed with scanning electron morphology (SEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). The surface hydrophilicity of the modified membranes increases with increasing the nanoparticle loadings (0–2 wt%). The membrane morphology indicated higher porosity and more finger like pores for the modified membranes. The porosity of 86.8% was achieved for the membrane containing 2 wt% PANI. The flux recovery ratio (FR) of membranes without UV radiation was increased by increasing the ratio of PANI to WO3 nanoparticles, while the antifouling ability of membranes including WO3 nanoparticles improved and reached to 98.87% after UV radiation. The highest COD removal before (76.65 %) and after (78.42%) UV radiation was obtained for the membrane containing 2 wt% nanoparticle loading. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
7.
CeO2表面分散态WO3的氨选择性催化还原性能 总被引:1,自引:0,他引:1
铈基材料在氨选择性催化还原氮氧化物(NH3-SCR)的研究中备受关注,亦被认为是潜在的新型环境友好型催化剂.CeO2具有独特的氧化还原性能和优良的储释氧性能,易与其它金属氧化物发生协同催化而有利于提高催化剂的催化反应性能,而WO3可以改善催化剂的表面酸性.研究亦报道了WO3可以改善CeO2的NH3-SCR反应的高温活性和N2选择性,其原因在于WO3增加了铈基催化剂NH3的吸附性能且抑制了NH3非选择性氧化成NOx.我们采用浸渍法制备了一系列负载型WO3/CeO2催化剂,并利用XRD,Raman,XPS,H2-TPR,NH3-TPD和in situ DRIFT对其理化性质进行了表征,系统研究了WO3负载量对WO3/CeO2催化剂NH3-SCR催化性能的影响,主要研究的内容包括:(1)WO3/CeO2催化剂中WO3的状态与催化性能之间的关系;(2)WO3负载量对WO3/CeO2催化剂的NH3和NO吸附行为的影响.NH3-SCR反应测试表明WO3负载量对WO3/CeO2催化剂有显著影响,优化的WO3/CeO2催化剂在200–450℃具有良好的脱硝性能,且在300℃通入SO2+H2O条件下依然保持优异的催化活性.XPS和H2-TPR结果表明,WO3分散在CeO2表面抑制了CeO2表面活性氧和表面晶格氧的氧化能力,这导致催化剂对NO的氧化以及对硝酸盐的吸附性能相比于纯CeO2显著降低,同时,in situ DRIFT也证实,随着WO3负载量的增加,WO3/CeO2催化剂表面吸附硝酸盐能力下降.因此,我们认为,由于低活性的晶相WO3覆盖在催化剂表面,阻碍了催化剂的表面活性位,降低了催化剂的氧化还原能力和表面酸量,从而晶相WO3抑制了WO3/CeO2催化剂的催化活性.同时,我们发现在70℃下采用氨水可以洗掉WO3/CeO2催化剂中的晶相WO3,且洗涤后的样品催化活性有所提升,这进一步验证了晶相WO3对催化活性的抑制作用.In situ DRIFT结果表明WO3/CeO2催化剂上NH3-SCR反应是通过Eley-Rideal机理进行,即吸附NH3物种与气相NO之间发生反应.随着WO3负载量的增加,WO3/CeO2催化剂中NH3的吸附能力先增强后减弱,而NO吸附能力持续减弱,这有利于表面酸位在反应过程中不被硝酸盐阻碍,当WO3负载量在分散容量附近时,这种吸附特性的效果发挥到最大,从而最大限度地促进NH3-SCR反应按照Eley-Rideal机理顺利进行. 相似文献
8.
Shchegolkov A. V. Knyazeva L. G. Shchegolkov A. V. Komarov F. F. Parfimovich I. D. 《Russian Journal of General Chemistry》2021,91(12):2660-2666
Russian Journal of General Chemistry - The optical and electromagnetic properties of graphene oxide (GO)-modified WO3 electrochromic nanocomposite films obtained by electrochemical deposition of... 相似文献
9.
Qinghua Liu Xiaoying Wang Andrew Benedict Lusine Janibekyan Stephanie Wong Su Yixian Wang Feimeng Zhou 《Electroanalysis》2019,31(11):2155-2161
Cyclic voltammetry (CV) has been combined with surface plasmon resonance (SPR) for probing electrochemical deposition and redox‐initiated film reorganization and conformational changes. However, the varying potential during CV scans leads to unwanted SPR background changes and complicates interpretation of SPR signals. In this work, we show that, when SPR is coupled with CV, the background correction for underpotential deposition of copper and electropolymerization of aniline is either inaccurate or difficult to perform. For accurate thickness measurements of electrodeposited films, potential‐step (PS) chronoamperometry is a method of choice to combine with SPR. The theory that interprets double‐layer charging is used to explain the advantage of PS chronoamperometry over CV in quantifying the thickness of electrodeposited thin films. The influence of the double‐layer charging on the potential‐induced SPR signal change was analyzed, and the results were used to optimize experimental parameters for PS‐SPR. Overall, PS‐SPR is easier to operate, simpler in data interpretation, and more accurate for the film thickness measurement. 相似文献
10.
《无机化学与普通化学杂志》2018,644(18):1072-1077
This work presents the characterization and preparation of three‐dimensionally ordered macroporous TiO2 and TiO2/WO3 composite nanoparticles with enhanced visible‐light‐responsive properties for rhodamine B (Rh B) photodegradation. The 3DOM TiO2 and TiO2/WO3 composites were prepared through a dip‐infiltrating sol‐gel process using a polystyrene (PS) colloidal crystal template. The materials were characterized by SEM, TEM, XRD, BET, XPS and UV/Vis. The 3DOM TiO2/WO3 composite structures ranged from well‐defined 3DOM structures, which are highly ordered and interconnected via small pore windows, to collapsed three‐dimensional structures as the WO3 content increased. The photoresponse range and specific surface area of the composite increased with less than 0.025 g of WCl6. The 3DOM TiO2/WO3 composite with less than 0.025 g of WCl6 exhibited a higher catalytic activity than 3DOM TiO2 for the photocatalytic degradation of Rh B under simulated sunlight illumination. 相似文献
11.
Deng Pan Zhengzou Fang Erli Yang Zhenqiang Ning Qing Zhou Kaiyang Chen Yongjun Zheng Yuanjian Zhang Yanfei Shen 《Angewandte Chemie (International ed. in English)》2020,59(38):16747-16754
The exceptional nature of WO3?x dots has inspired widespread interest, but it is still a significant challenge to synthesize high‐quality WO3?x dots without using unstable reactants, expensive equipment, and complex synthetic processes. Herein, the synthesis of ligand‐free WO3?x dots is reported that are highly dispersible and rich in oxygen vacancies by a simple but straightforward exfoliation of bulk WS2 and a mild follow‐up chemical conversion. Surprisingly, the WO3?x dots emerged as co‐reactants for the electrochemiluminescence (ECL) of Ru(bpy)32+ with a comparable ECL efficiency to the well‐known Ru(bpy)32+/tripropylamine (TPrA) system. Moreover, compared to TPrA, whose toxicity remains a critical issue of concern, the WO3?x dots were ca. 300‐fold less toxic. The potency of WO3?x dots was further explored in the detection of circulating tumor cells (CTCs) with the most competitive limit of detection so far. 相似文献
12.
Atomistic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries of Li,Na, and Ca 下载免费PDF全文
Yang He Meng Gu Haiyan Xiao Langli Luo Yuyan Shao Fei Gao Yingge Du Scott X. Mao Chongmin Wang 《Angewandte Chemie (International ed. in English)》2016,55(21):6244-6247
Intercalation and conversion are two fundamental chemical processes for battery materials in response to ion insertion. The interplay between these two chemical processes has never been directly seen and understood at atomic scale. Here, using in situ HRTEM, we captured the atomistic conversion reaction processes during Li, Na, Ca insertion into a WO3 single crystal model electrode. An intercalation step prior to conversion is explicitly revealed at atomic scale for the first time for Li, Na, Ca. Nanoscale diffraction and ab initio molecular dynamic simulations revealed that after intercalation, the inserted ion–oxygen bond formation destabilizes the transition‐metal framework which gradually shrinks, distorts and finally collapses to an amorphous W and MxO (M=Li, Na, Ca) composite structure. This study provides a full atomistic picture of the transition from intercalation to conversion, which is of essential importance for both secondary ion batteries and electrochromic devices. 相似文献
13.
本文以纳米多孔的TiO2膜为基底,通过恒电流阳极聚合的方法制备聚(3-溴噻吩) (PBrT)膜,并研究负载在纳米TiO2膜上PBrT的电致变色性能。采用原子力显微镜(AFM)对纳米TiO2膜的形貌进行表征。利用紫外吸收光谱、计时安培法、计时吸收法研究PBrT膜的电致变色性能。结果显示,沉积在纳米多孔TiO2膜上的PBrT具有更优越的电致变色性能。PBrT膜氧化态时为亮红色,还原态时为深蓝色,颜色的对比度为22%,库仑效率为70%,着色效率为191.3 cm2 C-1(还原态),88.9 cm2 C-1(氧化态),该聚合膜具有良好的记忆效应。PBrT/TiO2优异的电致变色性能使其成为良好的电致变色材料,在电致变色器件方面具有潜在的应用价值。 相似文献
14.
A Simple and Efficient One‐pot Synthesis of 1,4‐dihydropyridines Using Nano‐WO3‐ supported Sulfonic Acid as an Heterogeneous Catalyst under Solvent‐free Conditions 下载免费PDF全文
Nano‐tungsten trioxide‐supported sulfonic acid (n‐WSA) was found to be an effective heterogeneous cat‐ alyst for the one‐pot reaction of aromatic aldehydes, β‐dicarbonyl compounds and ammonium acetate to afford 1,4‐dihydropyridine derivatives in good to excellent yields. The other main advantages of the pres‐ ent method are short reaction times, simple workup, ease in purification and environmentally benign methodology. The reaction conditions were optimized employing Response Surface Method technique (Central Composite Design (CCD)) which is economically considerable because of the minimum number of experiments required to evaluate the effects of multiple parameters on the response. 相似文献
15.
Deming Huang Shanhong Wan Liping Wang Qunji Xue 《Surface and interface analysis : SIA》2011,43(7):1064-1068
Tungsten trioxide‐incorporated hydrogenated amorphous carbon (WO3/a‐C:H) films have been fabricated on a single‐crystal silicon wafer by liquid phase electrodeposition using methanol as carbon source and tungsten carbonyl as incorporated reagent. The morphology, composition and structure of the films have been investigated by SEM, XPS, Raman scattering spectroscopy, Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscope (TEM), respectively. The effects of WO3 incorporation on the electrical and wetting properties were studied in detail. The characterization results showed that tungsten trioxide nanocrystalline particles with diameters in the range of 10–20 nm were homogenously embedded in the amorphous carbon films. Also, the electrical conductivity and wetting ability of the films were strongly improved due to the contribution of the tungsten trioxide. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
16.
以室温离子液体1-丁基-3-甲基咪唑六氟磷酸盐[BMIM]PF6为溶剂及支持电解质,通过电化学方法制备聚(3-己基噻吩)(PHexT)膜。采用循环伏安法和扫描电子显微镜,对膜的电化学性质及形貌结构进行表征。同时通过紫外可见光谱、计时电流、计时库仑以及计时吸收曲线等方法研究聚合物膜的光谱电化学和电致变色特性,并在此基础上制备PHexT膜的电致变色器件。实验结果表明,在离子液体中制备的PHexT膜光滑致密,掺杂态时为蓝色,脱掺杂时为桔红色,并且具有高的颜色对比度 (40%),较短的响应时间 (2.5 s) 和高的电致变色着色效率 (230cm2/C),该膜制成的固态电致变色器件具有很好的电致变色性能和长的循环寿命。 相似文献
17.
以钨酸钠和正硅酸乙酯为前驱体直接合成高含量WO3掺杂介孔氧化硅泡沫(MCF)催化剂. 在773 K焙烧后显示出更高的热稳定性. 小角X射线散射, N2-物理吸附和透射电子显微镜结果表明钨物种嵌入后, 材料仍保持MCF特征的三维织构介孔特征. 紫外拉曼和紫外可见漫反射光谱结果表明钨物种主要以孤立的或者低聚态的氧化钨形式存在, 所以在氧化钨质量分数(w)低于20%时氧化钨物种能够高度分散在载体上. 在环戊烯选择氧化制戊二醛反应中, 反应16 h 后环戊烯的转化率达到100%, 戊二醛的产率达到83.5%. 催化剂重复利用实验表明催化剂的稳定性较好, 没有钨物种的脱落. 这种优异的催化性能归结于合适的氧化钨含量和高分散的钨物种. 相似文献
18.
溶液共混法制备PMMA-Fe2O3杂化膜的研究 总被引:1,自引:1,他引:0
以甲基丙烯酸甲酯(MMA),α-Fe2O3纳米材料为原料,丙烯酸(AA)为交联剂,采用溶液共混法制备了PMMA-Fe2O3杂化膜。用IR,TG-DTA和SEM对杂化膜进行了测试,结果表明:PMMA通过-COO-Fe键与Fe2O3发生杂化,α-Fe2O3以10 nm~60 nm的形式分散在膜中。杂化膜的附着力、硬度、冲击强度、热稳定性明显优于纯PMMA。杂化膜具有良好的柔韧性和耐溶剂性能,其光泽度随搅拌时间的延长而增加。 相似文献
19.
IntroductionThehexacyanoferrateredoxcoupleisoneofthemostextensivelyinvestigatedoutersphereredoxreactions[1].ThestudiesofFe(CN... 相似文献
20.
Ursa Opara-Krašovec Robi Ješe Boris Orel Joze Grdadolnik Goran Dražič 《Monatshefte für Chemie / Chemical Monthly》2002,133(8):1115-1133
Summary. The structure and the gasochromic properties of sol-gel-derived WO3 films with a monoclinic structure (m-WO3) were studied by focusing attention on the size of the monoclinic grains. The size of the m-WO3 grains is modified by the addition of an organic–inorganic hybrid to the initial peroxopolytungstic acid (W-PTA) sols which are based on chemically bonded poly-(propylene glycol) to triethoxysilane end-capping groups (ICS-PPG). The results obtained with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the heat
treatment (500°C) of WO3/ICS-PPG (0.5, 1, 2, 5, and 10 mol%) composite films results in a change of their morphology, and nanodimensional pores are formed
between the grains. High-resolution TEM (HRTEM) analysis revealed the presence of an amorphous phase on the outside of the
m-WO3 grains, whereas energy-dispersive X-ray spectra (EDXS) showed that this amorphous phase contained W and Si. Impregnation
of the WO3/ICS-PPG film with H2PtCl6/i-propanol solution followed by heat treatment at 380°C gave the films their gasochromic properties.
Infrared and Raman spectroscopic studies of the WO3/ICS-PPG film confirmed the results of the corresponding HRTEM and EDXS analysis. In situ UV/Vis and in situ IR spectra of the films were measured in hydrogen and in air, and colouring/bleaching changes and the corresponding kinetics
were assessed. The IR spectra of gasochromically coloured films showed that the mesoporous WO3/ICS-PPG (1 mol%) film transforms to tetragonal H
x
WO3 bronze. The IR spectra of the H
x
WO3 bronze are discussed with the aim to establish the existence of the metal-OH vibrations of gasochromically formed oxyhydroxide
tungsten bronze.
Received October 4, 2001. Accepted (revised) November 19, 2001 相似文献