首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An optimized microwave‐assisted extraction method using water (MAE‐W) as the extractant and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of D (+)‐(3,4‐dihydroxyphenyl) lactic acid (Dla), salvianolic acid B (SaB), and lithospermic acid (La) in Radix Salviae Miltiorrhizae. The key parameters of MAE‐W were optimized. It was found that the degradation of SaB was inhibited when using the optimized MAE‐W and the stable content of Dla, La, and SaB in danshen was obtained. Furthermore, compared to the conventional extraction methods, the proposed MAE‐W is a more rapid method with higher yield and lower solvent consumption with a reproducibility (RSD <6%). In addition, using water as extractant is safe and helpful for environment protection, which could be referred to as green extraction. The separation and quantitative determination of the three compounds was carried out by a developed reverse‐phase high‐performance liquid chromatographic (RP‐HPLC) method with UV detection. Highly efficient separation was obtained using gradient solvent system. The optimized HPLC analysis method was validated to have specificity, linearity, precision, and accuracy. The results indicated that MAE‐W followed by HPLC–UV determination is an appropriate alternative to previously proposed method for quality control of Radix Salviae Miltiorrhizae.  相似文献   

2.
A novel and reliable method based on microwave‐assisted extraction (MAE) followed by HPLC‐UV was developed and validated for the simultaneous quantification of six pharmacologically important oxoisoaporphine alkaloids in the total plants of Menispermum dauricum DC. The optimal MAE extraction condition was performed at 60°C for 11 min with ethanol–water (70:30, v/v) as the extracting solvent, and the solvent to solid ratio was 20:1. Chromatographic separation was achieved on a reversed‐phase YMC C18 column (250 × 4.6 mm, i.d., 5 µm) with a gradient mobile phase consisting of A (1% aqueous formic acid) and B (acetonitrile containing 1% formic acid) at a flow rate of 1.5 mL/min. The detection wavelength was set at 422 nm. Excellent linearity over the investigated concentration ranges was observed with values of r >0.999 for all analytes. The method developed was validated with acceptable sensitivity, intra‐ and inter‐day precision and extraction recoveries. It was successfully applied to the determination of six alkaloids in Menispermum dauricum DC from different sources and different parts of Menispermum dauricum DC. The results obtained indicated that the method is suitable for the quality control of Menispermum dauricum DC. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this work, a continuous high‐speed countercurrent chromatography method has been developed on the basis of elution‐extrusion mode and this method was successfully applied to the separation of maslinic and oleanolic acid from the extract of olive pulp. In the process of ‘elution’, the sample solution was continuously loaded into the column and the maslinic acid was steadily eluted out in this step while highly retained oleanlic acid always stayed in the column. In the process of ‘extrusion’, the oleanlic acid was pushed out of the column with the stationary phase. In this way, we achieved a large sample loading. A total of 120 mL sample solution (about 89.55% of the column volume) which contains 600 mg olive pulp extract was pumped in the apparatus by a constant‐flow pump and the maslinic and oleanolic acids were largely separated within 120 min. Both of these two compounds presented high yields and high purities (271.6 mg for maslinic acid with 86.7% and 83.9 mg oleanolic acids with 83.4%).  相似文献   

4.
SPE is a commonly applied technique for preconcentration of pesticides from water samples. Microwave‐assisted extraction (MAE) technique is the extraction applied for preconcentration of different compounds from solid samples. SPE coupled with MAE is capable of preconcentrating these compounds from water samples too. This investigation was aimed at improving the efficiency of atrazine, alachlor, and α‐cypermethrin pesticide extraction from the spiked water samples applying SPE followed by MAE. In this way, MAE served for elution of pesticides from C18‐extraction disks with solvent heated by microwave energy. Various elution conditions were tested for their effects on the extraction efficiency of the SPE–MAE combined technique. Several parameters, such as elution solvent volume (mL), elution temperature (°C), and duration of elution (min), affect the extraction efficiency of the SPE–MAE coupled system and need to be optimized for the selected pesticides. In order to develop a mathematical model, 15 experiments were performed in the central composite design. The equation was then used to predict recoveries of the pesticides under specific experimental conditions. Optimization of microwave extraction was accomplished using the genetic algorithm approach. Best results were achieved using 20 mL of ethanol at 60°C. Optimal hold time was 5 min and 24 s. The SPE–MAE combination was also compared with the conventional SPE extraction technique with elution of a nonpolar or a moderately polar compound with nonpolar solvents.  相似文献   

5.
In this work, for the first time, microwave‐assisted extraction (MAE) followed by CE was developed for the fast analysis of catechin and epicatechin in green tea. In the proposed method, catechin and epicatechin in green tea samples were rapidly extracted by MAE technique, and then analyzed by CE. The MAE conditions and the method's validation were studied. It is found that the extraction time of 1 min with 400 W microwave irradiation is enough to completely extract catechin and epicatechin in green tea sample, whereas the conventional ultrasonic extraction (USE) technique needs long extraction time of 60 min. The method validations were also studied in this work. The calibration curve shows good linearity in 0.01–3 mg/mL for catechin (R2=0.993), and 0.005–3 mg/mL for epicatechin (R2=0.996), respectively. The RSD values for catechin and epicatechin are 0.65 and 2.58%, respectively. This shows that the proposed method has good reproducibility. The proposed method has good recoveries, which are 118% for catechin and 120% for epicatechin. The proposed method was successfully applied to determination of the catechin and epicatechin in different green tea samples. The experiment results have demonstrated that the MAE following CE is a simple, fast and reliable method for the determination of catechin and epicatechin in green tea.  相似文献   

6.
7.
Novel poly(ionic liquids) were synthesized and immobilized on prepared magnetic nanoparticles, which were used to extract pesticides from fruit and vegetable samples by dispersive solid‐phase extraction prior to high‐performance liquid chromatography analysis. Compared with monomeric ionic liquids, poly(ionic liquids) have a larger effective contact area and higher viscosity, so they can achieve higher extraction efficiency and be used repeatedly without a decrease in analyte recovery. The immobilized poly(ionic liquids) were rapidly separated from the sample matrix, providing a simple approach for sample pretreatment. The nature and volume of the desorption solvent and amount of poly(ionic liquid)‐modified magnetic material were optimized for the extraction process. Under optimum conditions, calibration curves were linear (R2 > 0.9988) for pesticide concentrations in the range of 0.100–10.000 μg/L. The relative standard deviations for repeated determinations of the four analytes were 2.29–3.31%. The limits of detection and quantification were 0.29–0.88 and 0.97–2.93 μg/L, respectively. Our results demonstrate that the developed poly(ionic liquid)‐modified material is an effective absorbent to extract pesticides from fruit and vegetable samples.  相似文献   

8.
Optimization of focused microwave (FMW)‐assisted extraction of 4,4′‐DDE, 4,4′‐DDD, and 4,4′‐DDT from soil samples was carried out using central composite designs. All the extracts were analyzed with GC/MS and some of them also with GC/AED using columns of different polarities for each of the techniques. The extraction of the analytes was carried out in two ways: with acetic acid as microwave radiation absorbent solvent and n‐decane to concentrate the analytes and with reagent water and iso‐octane as solvents. In the first case, the influence of the extraction temperature, the extraction time, and the addition of sodium chloride were studied and the optimum conditions for the extraction of 1 g of soil with 5 mL of acetic acid and 2 mL of n‐decane were 1.30 mol L–1 sodium chloride at 98°C for 9.3 min. In the second case, the temperature was kept constant (94°C) and the influence of the concentration of sodium chloride and the extraction time were studied. The optimum conditions were 5 mL of a 2.0 mol L–1 sodium chloride together with 2 mL of iso‐octane for 15 min. The recoveries obtained by water‐FMW extraction were significantly lower than those obtained by the acetic acid‐FMW procedure. These last recoveries were in good agreement with those obtained by closed microwave assisted‐extraction with acetone‐n‐hexane as solvent.  相似文献   

9.
N,N′‐Pyromelliticdiimido‐di‐L ‐alanine ( 1 ), N,N′‐pyromelliticdiimido‐di‐L ‐phenylalanine ( 2 ), and N,N′‐pyromelliticdiimido‐di‐L ‐leucine ( 3 ) were prepared from the reaction of pyromellitic dianhydride with corresponding L ‐amino acids in a mixture of glacial acetic acid and pyridine solution (3/2 ratio) under refluxing conditions. The microwave‐assisted polycondensation of the corresponding diimide‐diacyl chloride monomers ( 5–7 ) with 4‐phenyl‐2,6‐bis(4‐aminophenyl) pyridine ( 10 ) or 4‐(p‐methylthiophenyl)‐2,6‐bis(4‐aminophenyl) pyridine ( 12 ) were carried out in a laboratory microwave oven. The resulting poly(amide‐imide)s were obtained in quantitative yields, and they showed admirable inherent viscosities (0.12–0.55 dlg?1), were soluble in polar aprotic solvents, showed good thermal stability and high optical purity. The synthetic compounds were characterized by IR, MS, 1H NMR, and 13C NMR spectroscopy, elemental analysis, and specific rotation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Benzotriazole ultra‐violet stabilisers are compounds widely used in personal care products, which can reach the environment after passing through wastewater treatment plants. In this work, we develop a novel method to evaluate the presence of seven compounds in marine sediments and sewage sludges using microwave‐assisted extraction followed by a clean‐up step based in on‐line solid phase extraction coupled to ultra‐high‐performance liquid chromatography with MS/MS detection. This method allows for fast and efficient extraction from the solid matrix, subsequent automatic on‐line purification and preconcentration, and analysis. For the optimised method, LOD were from 53.3 to 146 ng/kg and LOQ were in the range of 176–486 ng/kg. The method was validated for different environmental solid samples with satisfactory recoveries and relative standard deviations, between 46.1 and 83.9 and 7.8 and 15.5% (sludges) and 50.1 and 87.1% and 8.83 and 16.3% (sediments), respectively. Finally, the studied analytes were quantified in concentrations between 0.18 and 24.0 ng/g in real samples of marine sediments and sewage sludges from Gran Canaria Island (Spain).  相似文献   

11.
A reliable, rapid and nontoxic analytical method was proposed for the simultaneous determination of 16 organophosphorus pesticides in Chinese herbal medicines. The pesticides were extracted by ethanol and the experimental variables, such as temperature, extraction time and volume of ethanol, were optimized through orthogonal array experimental design. Cleanup of extracts was performed with dispersive‐solid phase extraction using primary secondary amine as the sorbent. The determination of pesticides in the final extracts was carried out by gas chromatography–flame photometric detection. Under optimized conditions the obtained recoveries, except for isocarbophos, were in the range 73.8–123%, with relative standard deviations equal to or lower than 15.2% and limits of detection ranging from 0.001 to 0.009 mg/kg. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Here in, magnetic nanoparticles combined with graphene oxide adsorbent were fabricated via a microwave‐assisted synthesis method, and used in the solid‐phase extraction of three phenolic compounds (phenol, 4‐nitrophenol, and m‐methylphenol) in environmental water samples. Various instrumental methods were employed to characterize the magnetic nanoparticles modified with graphene oxide. The influence of experimental parameters, such as desorption conditions, amount of adsorbent, extraction time, and pH, on the extraction efficiency was investigated. Owing to the high surface area and excellent adsorption capacity of the prepared material, satisfactory extraction was achieved. Under optimum conditions, a linear response was observed in the concentration range of 1.000–100.0 μg/L for phenol, 0.996–99.6 μg/L for 4‐nitrophenol, and 0.975–97.5 μg/L for m‐methylphenol, with correlation coefficients in the range of 0.9995–0.9997. The limit of detection (signal‐to‐noise ratio of 3) of the method varied between 0.5 and 0.8 μg/L. The relative standard deviations were <5.2%. The recovery percentages of the method were in the range of 89.1–104.3%. The results indicate that the graphene oxide‐modified magnetic nanoparticles possess high adsorptive abilities toward phenolic compounds in environmental water samples.  相似文献   

13.
本文建立了一种快速的微薄辅助萃取-高效液相色谱法分离检测羊肝、牛肉和牛奶样品中三种喹诺酮类药物(氟罗沙星、洛美沙星和斯帕沙星)和两种非甾类化合物(酮洛芬和布洛芬)的方法。并对微波辅助萃取条件利用正交试验进行了优化:萃取温度为4℃、萃取时间为6min、萃取溶剂为乙腈、萃取溶剂体积为10mL。在浓度范围为0.25—0.75 μg•g-1时各待测物的三种不同水平的添加回收率在60.0%到107%之间,并获得较好的精确度(RSD<11%)。  相似文献   

14.
An optimized microwave‐assisted extraction (MAE) method and RP‐HPLC method were developed for the simultaneous extraction and determination of rutin, forsythiaside A, and phillyrin in the fruits of Forsythia suspensa. The key parameters of the open‐vessel MAE process were optimized. A mixed solvent of methanol and water (70:30, v/v) was most suitable for the simultaneous extraction of the three components. The sample was soaked for 10 min before extraction. The optimized conditions were: microwave power 400 W, temperature 70°C, solvent‐to‐material ratio 30 mL/g, and extraction time 1 min. Compared to conventional extraction methods, the proposed method can simultaneously extract the three components in high yields and was proved to be a more rapid method with a lower solvent consumption. The optimized HPLC–photodiode array detection analysis was validated to have good linearity, precision, accuracy, and sensitivity. The developed MAE followed by RP‐HPLC is a fast and appropriate method for the simultaneous extraction and determination of rutin, forsythiaside A, and phillyrin in the fruits of F. suspensa.  相似文献   

15.
Ursolic acid (UA) is the most important bioactive phytoconstituent of Eucalyptus × hybrida Maiden leaves and exhibits anticancer, antimutagenic, anti‐inflammatory, antioxidative, and antiprotozoal activities. In this study, microwave‐assisted extraction technique was employed for rapid isolation of UA from the leaves of Eucalyptus × hybrida and simultaneously HPLC‐diode array method was developed for the quantification of UA. Effects of several experimental parameters on the extraction efficiencies of UA, such as type and volume of extraction solvents, microwave power and extraction time, were evaluated. The optimal extraction conditions were found to be 20 mL of a mixture of chloroform/methanol, 60:40; liquid‐to‐material ratio, 4:1; preleaching time, 10 min; microwave power, 600 W; temperature, 50°C; and microwave irradiation time, 5 min. Under the optimum conditions, the yield of UA was found to be 1.95 ± 0.08% in the dry leaves of Eucalyptus × hybrida. The results showed that microwave‐assisted extraction is a more rapid extraction method with higher yield and lower solvent consumptions than the conventional method. It is a faster, convenient, and appropriate method and it may be used for rapid isolation and quantification of UA and other important phytoconstituents present in the leaves of Eucalyptus × hybrida.  相似文献   

16.
Microwave‐ and ultrasound‐assisted methods based on a quick, easy, cheap, effective, rugged, and safe sample preparation approach followed by high‐performance liquid chromatography with tandem mass spectrometry were developed for the simultaneous determination of eight bisphenol analogues in serum and sediment. The developed methods provided satisfactory extraction efficiency for the energy provided by microwaves and ultrasound. Compositions of commercial sorbents (primary secondary amine, MgSO4, octadecyl‐modified silica, and graphitized carbon black) were evaluated. The ultrasound‐assisted method was suited for serum using primary secondary amine, MgSO4, and octadecyl‐modified silica as sorbents and a mixture of hexane and ethyl acetate as extraction solvent. The microwave‐assisted method worked better for sediment with tetrahydrofuran and methanol as solvents and primary secondary amine, MgSO4, octadecyl‐modified silica, and graphitized carbon black as sorbents. Other experimental parameters, such as extraction temperature and time, were also optimized. The inter‐ and intraday relative standard deviations ranged from 2.7 to 5.5%. The limits of detection were between 0.1 and 1.0 ng/mL for serum and between 0.1 and 0.5 ng/g dry weight for sediment. The proposed methods were successfully applied to seven sediment and 20 human serum samples. The results showed that the developed methods were practical for the analysis and biomonitoring of bisphenols in sera and sediment.  相似文献   

17.
A rapid and cost‐effective method based on microwave‐assisted extraction followed by capillary electrophoresis was developed for simultaneous quantification of seven alkaloids in Corydalis decumbens for the first time. The main parameters affecting microwave‐assisted extraction and capillary electrophoresis separation were investigated and optimized. The optimal microwave‐assisted extraction was performed at 40°C for 5 min using methanol/water (90:10, v/v) as the extracting solvent. Electrophoretic separation was achieved within 15 min using an uncoated fused‐silica capillary (50 μm internal diameter and 27.7 cm effective length) and a 500 mM Tris buffer containing 45% v/v methanol (titrated to pH* 2.86 with H3PO4). The developed method was successfully applied to the quantification of seven alkaloids in Corydalis decumbens obtained from different regions of China. The combination of microwave‐assisted extraction with capillary electrophoresis was an effective method for the rapid analysis of the alkaloids in Corydalis decumbens .  相似文献   

18.
As a famous Chinese herb having good inhibitory effects on numerous human cancers both in vitro and in vivo, Scutellaria barbata D. Don attracts extensive attention worldwide. In this work, four flavonoids named scutellarin, baicalin, luteolin, and apigenin were simply and rapidly prepared from S. barbata by microwave‐assisted extraction coupled to countercurrent chromatography. Extraction conditions including irradiation time, extraction temperature, liquid/solid ratio, and microwave power were optimized using an orthogonal array design method. The extract of S. barbata was separated and purified with a two‐phase solvent system composed of hexane/ethyl acetate/methanol/acetic acid/water (1:5:1.5:1:4, v/v/v/v/v) and 4.5 mg of scutellarin, 4.6 mg of baicalin, 1.1 mg of luteolin, 2.1 mg of apigenin were obtained from 2.0 g original sample in a single run. The purities of scutellarin, baicalin, luteolin, and apigenin determined by HPLC were 93.6, 97.3, 97.6, and 98.4%, respectively. The targeted compounds were identified by LC with MS and 1H NMR spectroscopy. The total time including extraction, separation, and purification was <300 min. Compared to traditional methods, microwave‐assisted extraction coupled to countercurrent chromatography method is more simple and rapid for the extraction, separation, and purification of flavonoid compounds from natural products.  相似文献   

19.
This work describes a rapid, stable, and accurate method for determining the free amino acids, biogenic amines, and ammonium in tobacco. The target analytes were extracted with microwave‐assisted extraction and then derivatized with diethyl ethoxymethylenemalonate, followed by ultra high performance liquid chromatography analysis. The experimental design used to optimize the microwave‐assisted extraction conditions showed that the optimal extraction time was 10 min with a temperature of 60°C. The stability of aminoenone derivatives was improved by keeping the pH near 9.0, and there was no obvious degradation during the 80°C heating and room temperature storage. Under optimal conditions, this method showed good linearity (R 2 > 0.999) and sensitivity (limits of detection 0.010–0.081 μg/mL). The extraction recoveries were between 88.4 and 106.5%, while the repeatability and reproducibility ranged from 0.48 to 5.12% and from 1.56 to 6.52%, respectively. The newly developed method was employed to analyze the tobacco from different geographical origins. Principal component analysis showed that four geographical origins of tobacco could be clearly distinguished and that each had their characteristic components. The proposed method also showed great potential for further investigations on nitrogen metabolism in plants.  相似文献   

20.
The ring‐opening polymerization (ROP) of p‐dioxanone (PDO) under microwave irradiation with triethylaluminum (AlEt3) or tin powder as catalyst was investigated. When the ROP of PDO was catalyzed by AlEt3, the viscosity‐average molecular weight (Mv) of poly(p‐dioxanone) (PPDO) reached 317,000 g mol?1 only in 30 min, and the yield of PPDO achieved 96.0% at 80 °C. Tin powder was successfully used as catalyst for synthesizing PPDO by microwave heating, and PPDO with Mv of 106,000 g mol?1 was obtained at 100 °C in 210 min. Microwave heating accelerated the ROP of PDO catalyzed by AlEt3 or tin powder, compared with the conventional heating method. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3207–3213, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号