首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose‐derived carbon‐decorated magnetic microspheres were synthesized by an easy hydrothermal carbonization method and used as a high‐efficiency adsorbent to extract bisphenols in water and tea drinks. The as‐prepared carbon‐decorated magnetic microspheres had a well‐defined core–shell structure with a shell thickness of about 5 nm. The microspheres possessed high saturation magnetization at 60.8 emu/g and excellent chemical stability in aqueous solution. The experimental parameters affecting the extraction efficiency, including extraction time, pH, adsorbent dosage, desorption solvents, desorption time, and solution volume were evaluated. Electrostatic and π–π interactions were the major driving forces during extraction. Overall, a new magnetic solid‐phase extraction method of determining bisphenols was developed on the basis of as‐prepared magnetic microspheres. The method had a wide linear range, low limits of detection (0.03–0.10 µg/L), and high recoveries (85.4–104.6%).  相似文献   

2.
Core–shell magnetic carbon microspheres were synthesized by a simple hydrothermal method and used as a novel magnetic solid‐phase extraction adsorbent for the sensitive determination of polybrominated diphenyl ethers in environmental water samples. Gas chromatography with negative chemical ionization mass spectrometry was adopted for the detection. Box–Behnken design was used to investigate and optimize important magnetic solid‐phase extraction parameters through response surface methodology. Under the optimal conditions, low limits of detection (0.07–0.17 ng·L?1), a wide linear range (1–1000 ng·L?1), and good repeatability (0.80–4.58%) were achieved. The developed method was validated with several real water samples, and satisfactory results were obtained in the range of 72.8–97.9%. These results indicated that core–shell magnetic carbon microspheres have great potential as an adsorbent for the magnetic solid‐phase extraction of polybrominated diphenyl ethers at trace levels from environmental water samples.  相似文献   

3.
An adsorbent of carbon dot@poly(glycidyl methacrylate)@Fe3O4 nanoparticles has been developed for the microwave‐assisted magnetic solid‐phase extraction of polycyclic aromatic hydrocarbons in environmental aqueous samples prior to high‐performance liquid chromatography with UV/visible spectroscopy detection. Poly(glycidyl methacrylate) was synthesized by atom transfer radical polymerization. The chain length and amount of carbon dots attached on them can be easily controlled through changing polymerization conditions, which contributes to tunable extraction performance. The successful fabrication of the nano‐adsorbent was confirmed by transmission electronic microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and vibrating sample magnetometry. The extraction performance of the adsorbent was evaluated by using polycyclic aromatic hydrocarbons as model analytes. The key factors influencing the extraction, such as microwave power, adsorption time, desorption time and desorption solvents were investigated in detail. Under the optimal conditions, the microwave‐assisted method afforded magnetic solid‐phase extraction with short extraction time, wide dynamic linear range (0.02–200 μg/L), good linearity (R2 ≥ 98.57%) and low detection limits (20–90 ng/L) for model analytes. The adsorbent was successfully applied for analyzing polycyclic aromatic hydrocarbons in environmental aqueous samples and the recoveries were in the range of 86.0–124.2%. Thus, the proposed method is a promising candidate for fast and reliable preconcentration of trace polycyclic aromatic hydrocarbons in real water samples.  相似文献   

4.
A novel adsorbent made of polydopamine‐functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core–shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples.  相似文献   

5.
Natural biomass magnetic porous carbon was successfully prepared via a cost-effective and green route using mangosteen shells as raw material. The prepared magnetic porous carbon was used as a magnetic solid-phase extraction adsorbent for bisphenols enrichment from beverages followed by high-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry. Parameters affecting extraction efficiency including sample solution pH, adsorbent amount, extraction time, eluent type, and volume were optimized. Results showed that biomass magnetic porous carbon had excellent adsorption properties for bisphenols due to its large specific surface area and abundant functional groups, which could form hydrogen bonding and π-π stacking with bisphenols. The enrichment factor of 3 bisphenols was in the range of 15–19. Under optimum conditions, favorable linearity for all analytes was obtained with correlation coefficients higher than 0.998. Recoveries of spiked samples were in the range of 88.5–105.1% with a relative standard deviation of 3.4–5.5%. These results demonstrated that magnetic porous carbon may be a promising adsorbent for the enrichment of aromatic compounds.  相似文献   

6.
A novel magnetic adsorbent Fe3O4/reduced graphene oxide‐carbon nanotubes, was prepared by one‐pot solvothermal synthesis method. It was characterized by scanning electron microscopy, X‐ray powder diffraction and vibrating sample magnetometry. The diameter of Fe3O4 microparticles was about 350 nm, which were covered by carbon nanotubes and reduced graphene oxide sheets, while carbon nanotubes inserted between the reduced graphene oxide sheets effectively prevented their aggregation. The composite had large surface area and good magnetic property, suiting for magnetic solid‐phase extraction and the determination of sulfonamides, by coupling with high‐performance liquid chromatography. Under the optimized conditions (including extraction time, amount of adsorbent, solution pH, ionic strength and desorption conditions), a good linear was achieved in the concentration range of 5–500 μg/L and the low limits of detection and low limits of quantification were 0.35–1.32 and 1.16–4.40 μg/L, respectively. The enrichment factors were estimated to be 24.72 to 30.15 fold. The proposed method was applied for the detection of sulfonamides in milk sample and the recoveries were 88.4–105.9%, with relative standard deviations of 0.74–5.38%.  相似文献   

7.
A new type of adsorbent composed of magnetic three‐dimensional graphene coated with silver nanoparticles was synthesized by an electroless technique and used in the magnetic solid‐phase extraction of selected pesticides (fenitrothion, chlorpyrifos, and hexaconazole) before gas chromatography with a micro‐electron capture detector. The adsorbent was characterized using Fourier‐transform infrared spectroscopy, X‐ray diffraction, vibrating sample magnetometry, and field‐emission scanning electron microscopy. The important extraction parameters such as pH, adsorbent dose, extraction time, and desorption conditions were investigated. Under the optimal conditions, the analytical figures of merit were obtained as: linear dynamic range of 0.1–5 ng/g with determination coefficients of 0.991–0.996; limit of detection of 0.07–0.13 ng/g; limit of quantification of 0.242–0.448 ng/g; and the intraday and interday relative standard deviations (= 5 ng/g, = 3) were 3.8–8.7 and 6.6–8.9%, respectively. The developed method was successfully applied for analysis of the selected pesticides in tomato and grape with extraction recoveries in the range of 72.8–109.6%.  相似文献   

8.
A magnetic solid‐phase extraction adsorbent that consisted of citrus peel‐derived nanoporous carbon and silica‐coated Fe3O4 microspheres (C/SiO2@Fe3O4) was successfully fabricated by co‐precipitation. As a modifier for magnetic microspheres, citrus peel‐derived nanoporous carbon was not only economical and renewable for its raw material, but exerted enormous nanosized pore structure, which could directly influence the type of adsorbed analytes. The C/SiO2@Fe3O4 also possessed the advantages of Fe3O4 microspheres like superparamagnetism, which could be easily separated magnetically after adsorption. Integrating the superior of biomass‐derived nanoporous carbon and Fe3O4 microspheres, the as‐prepared C/SiO2@Fe3O4 showed high extraction efficiency for target analytes. The obtained material was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and the Brunauer–Emmett–Teller method, which demonstrated that C/SiO2@Fe3O4 was successfully synthesized. Under the optimal conditions, the adsorbent was selected for the selective adsorption of seven insecticides before gas chromatography with mass spectrometry detection, and good linearity was obtained in the concentration range of 2–200 μg/kg with the correlation coefficient ranging from 0.9952 to 0.9997. The limits of detection were in the range of 0.03–0.39 μg/kg. The proposed method has been successfully applied to the enrichment and detection of seven insecticides in real vegetable samples.  相似文献   

9.
The fabrication of novel poly(ionic liquids)‐modified polystyrene (PSt) magnetic nanospheres (PILs‐PMNPs) by a one‐pot miniemulsion copolymerization reaction was achieved through an efficient microwave‐assisted synthesis method. The morphology, structure, and magnetic behavior of the as‐prepared magnetic materials were characterized by using transmission electron microscopy, vibrating sample magnetometry, etc. The magnetic materials were utilized as sorbents for the extraction of phthalate esters (PAEs) from beverage samples followed by high‐performance ultrafast liquid chromatography analysis. Significant extraction parameters that could affect the extraction efficiencies were investigated particularly. Under optimum conditions, good linearity was obtained in the concentration range of 0.5–50 (dimethyl phthalate), 0.3–50 (diethyl phthalate), 0.2–50 (butyl benzyl phthalate), and 0.4–50 μg/L (di‐n‐butyl phthalate), with correlation coefficients R 2 > 0.9989. Limits of detection were in the range 125–350 pg. The proposed method was successfully applied to determine PAEs from beverage samples with satisfactory recovery ranging from 77.8 to 102.1% and relative standard deviations ranging from 3.7 to 8.4%. Comparisons of extraction efficiency with PSt‐modified MNPs as sorbents were performed. The results demonstrated that PILs‐PMNPs possessed an excellent adsorption capability toward the trace PAE analytes.  相似文献   

10.
To address sustainability issues, the green synthesis of nanomaterials has recently received considerable attention. This article addresses a novel and cost-effective adsorbent for the extraction of eight phenyl-N-methylcarbamate insecticides from water samples. We first synthesized a magnetite/hydroxyapatite nanocomposite using snail shell powder via an environmental friendly approach. The morphology and physicochemical properties of magnetic hydroxyapatite were characterized by Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. Magnetic extraction parameters were optimized using a Doehlert matrix. Under optimum conditions, the magnetic extraction coupled with a LC–MS method shows good linearity with R2 ≥ 0.9982, suitable intra- and interday precision, and limits of detection and quantification in the range of 0.052–0.093 μg/L and 0.11–0.31 μg/L, respectively. Satisfactory relative recoveries of all carbamates were achieved from fortified water samples in the range of 93.89–101.01%.  相似文献   

11.
In this study, activated carbon/diatomite-based magnetic nancomposites (denoted as AC/DBMNs) were synthesized and applied as an adsorbent for magnetic solid-phase extraction of S-phenylmercapturic acid (S-PMA) from human urine prior to high-performance liquid chromatography. The surface morphologies and structures of AC/DBMNs were characterized by Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, X-ray diffraction, Brunauer–Emmett–Teller surface area, vibrating sample magnetometer and ζ-potential measurements. The experimental parameters including sample volume, sample pH, adsorbent amount, extraction time, elution solvent and desorption time were investigated in detail. Under the optimum conditions, the method exhibited good linearity (r > 0.9993) within the concentration ranges of 0.03–1.0 mg/L. Moreover, the limits of detection and quantification were 0.01 and 0.03 mg/L, respectively. The enrichment factor was 5, and good recoveries (88.9–97.3%) with relative standard deviations in the range of 5.6–6.8% (n = 6) for inter-day and 6.3–8.1% (n = 6) for intra-day were achieved. The developed method was successfully applied to the analysis of S-PMA in urine samples. In addition, this accurate and sensitive method has great potential to be applied in the early screening and clinical diagnosis of the workers exposed to benzene.  相似文献   

12.
A novel magnetic porous carbon derived from a bimetallic metal–organic framework, Zn/Co‐MPC, was prepared by introducing cobalt into ZIF‐8. Magnetic porous carbon that possesses magnetic properties and a large specific surface area was firstly fabricated by the direct carbonization of Zn/Co‐ZIF‐8. The prepared magnetic porous carbon material was characterized by scanning electron microscopy, transmission electron microscopy, powder X‐ray diffraction, N2 adsorption, and vibrating sample magnetometry. The prepared magnetic porous carbon was used as a magnetic solid‐phase extraction adsorbent for the enrichment of chlorophenols from water and honey tea samples before high‐performance liquid chromatography analysis. Several experimental parameters that could influence the extraction efficiency were investigated and optimized. Under the optimum conditions, good linearities (r > 0.9957) for all calibration curves were obtained with low limits of detection, which are in the range of 0.1–0.2 ng mL?1 for all the analytes. The results showed that the prepared magnetic porous carbon had an excellent adsorption capability toward the target analytes.  相似文献   

13.
Magnetic spherical carbon was synthesized by a facile hydrothermal carbonization procedure with biomass glucose as the carbon precursor and nanoclusters iron colloid as magnetic precursor. The textures of the as‐prepared magnetic spherical carbon were characterized by nitrogen adsorption–desorption isotherms, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy and vibration sample magnetometry. Results indicated that the magnetic spherical carbon possessed high surface area as well as strong magnetism, which endows the material with good adsorption capability and easy separation properties. To assess its absorption performance, the magnetic spherical carbon was employed as adsorbent for the extraction and preconcentration of phthalate esters from lake water and milk samples before high‐performance liquid chromatographic analysis. Some key parameters that could influence the enrichment efficiency were investigated. Under the optimum conditions, a good linearity was achieved with the linear correlation coefficients higher than 0.9973. The limits of detection (S/N = 3) were 0.05–0.08 ng/mL for lake water and 0.1–0.2 ng/mL for milk samples. The recoveries of the analytes for the method were in the range 80.1–112.6%.  相似文献   

14.
In this study, corn stalk was used to synthesize a magnetic adsorbent by pyrolysis together with KHCO3 as the chemical activator and iron(III) salt as the magnetic reagent. The characterization by scanning electron microscopy, transmission electron microscopy and N2 adsorption–desorption analysis showed that the magnetic carbon adsorbent had a structure of hierarchical pores with a high specific surface area. To evaluate its adsorption performance, the adsorbent was used for the extraction of carbamates pesticides (propoxur, isoprocarb and fenobucarb) from water and zucchini samples before high‐performance liquid chromatography analysis. The result showed that the adsorbent had a good adsorption capability for the analytes. Under the optimized conditions, a good linearity for the analytes existed in the range of 0.1–100.0 ng/mL for water samples and 0.5–100.0 ng/g for zucchini samples with the correlation coefficients of 0.9992–0.9998. The limits of detection for the analytes at a signal to noise ratio of 3 were 0.03 ng/mL for water samples and 0.20–0.50 ng/g for zucchini samples.  相似文献   

15.
In this study, porous sandwich structure Fe3O4 nanoparticles coated by polyhedral oligomeric silsesquioxanes and β‐cyclodextrin were prepared by surface polymerization and were used as the magnetic solid phase extraction adsorbent for the extraction and determination of carbaryl and carbofuran. The Fe3O4 nanoparticles coated with polyhedral oligomeric silsesquioxanes and β‐cyclodextrin were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, vibrating sample magnetometry, and scanning electron microscopy. After optimizing the extraction conditions, a method that combined magnetic solid phase extraction with high‐performance liquid chromatography was developed for the determination of carbaryl and carbofuran in apple. The method exhibited a good linearity in the range of 2–400 μg/kg for carbaryl and carbofuran (R= 0.9995), respectively. The limits of detection were 0.5 μg/kg of carbaryl and 0.7 μg/kg for carbofuran in apple, respectively. Extraction recoveries ranged from 94.2 to 103.1% with the preconcentration factor of 300 and the relative standard deviations were less than 5.9%. These results indicated that the method combined magnetic solid phase extraction with high‐performance liquid chromatography and was promising for the determination of carbaryl and carbofuran at trace amounts.  相似文献   

16.
A new type of molecularly imprinted ionic liquid magnetic microspheres was synthesized by aqueous suspension polymerization, using 4,4′‐dichlorobenzhydrol as a dummy template, and 1‐allyl‐3‐ethylimidazolium hexafluorophosphate and methacrylic acid as co‐functional monomers. The results of morphology and magnetic property evaluation of the obtained microspheres demonstrated that it was monodispersed spherical, possessed a rough surface, and an outstanding magnetic properties. Binding experiments revealed that it had a substantial adsorption capacity and strong recognition ability to organochlorine pesticides (OCPs) in aqueous solution. Then the microspheres were applied as an adsorbent of magnetic dispersive solid‐phase extraction for the selective recognition and rapid determination of OCPs in environmental water. Under the optimum conditions, good linearity of the three types of OCPs (dicofol, tetradifon, and p,p′‐dichlorodiphenyldichloroethane) was achieved in the range of 1.0–100 ng/mL (r ≥ 0.9994). The recoveries at three spiking levels ranged from 82.6 to 100.4% with the RSDs less than 6.9%.  相似文献   

17.
In this study, monodisperse magnetic carbon microspheres were successfully synthesized through the carbonization of phenolic resin encapsulated Fe3O4 core-shell structures. The magnetic carbon microspheres showed high performance in ultrafast extraction and separation of trace triazine herbicides from environmental water samples. Under optimized conditions, both the adsorption and desorption processes could be achieved in 2 min, and the maximum adsorption capacity for simazine and prometryn were 387.6 and 448.5 μg/g. Coupled with high-performance liquid chromatography-ultraviolet detection technology, the detection limit of triazine herbicides was in the range of 0.30–0.41 ng/mL. The mean recoveries ranged from 81.44 to 91.03% with relative standard deviations lower than 7.47%. The excellent magnetic solid-phase extraction performance indicates that magnetic carbon microspheres are promising candidate adsorbents for the fast analysis of environmental contaminants.  相似文献   

18.
Extraction, pre-concentration and determination of trace amounts of mercury ions from water samples were investigated by magnetic solid phase extraction (MSPE) method using Fe3O4 nanoparticles decorated with polythionine as an adsorbent. A simple chemical synthesis by catalytic reaction of thionine in the presence of FeCl3 and hydrogen peroxide was used for preparation of the magnetic sorbent. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, vibrating sample magnetometer analysis and Fourier transform infrared spectroscopy were used to characterise the adsorbent. Mercury ions were determined by cold vapour atomic absorption spectrometry. The parameters for MSPE procedure, such as pH of the extraction solution, adsorption time, weight adsorbent, elution conditions (type, concentration and volume of the eluent), volume of the sample solution and effects of coexisting ions were investigated. The obtained optimal conditions were: sample pH of 4; sorbent amount of 4 mg; sorption time of 20 min; elution solvent of HNO3 (0.3 mol L?1)/thiourea (2% w/v) with volume of 2 mL, and breakthrough volume of 400 mL. A good linearity in the concentration range of 0.025–40 µg L?1 (R2 > 0.999) with the pre-concentration factor of 198 was obtained. The limits of detection and quantification were achieved as 0.008 and 0.025 µg L?1, respectively. Furthermore, sea and river water samples were analysed and good recoveries (97.1–99.6%) were obtained.  相似文献   

19.
A magnetic solid-phase extraction (MSPE) method coupled to high performance liquid chromatography with UV (HPLC-UV) was proposed for the determination of organophosphorus pesticides (OPPs) at trace levels in environmental water samples. The ternary nanocomposite of graphene-carbon nanotube-Fe3O4 (G-CNT-Fe3O4) has been synthesised via a simple solvothermal process and the resultant material was characterised by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Significant factors that affect the extraction efficiency, such as amount of magnetic nanocomposite, extraction time, ionic strength, solution pH and desorption conditions were carefully investigated. The results demonstrated that the proposed method had a wide dynamic linear range (0.005–200 ng mL?1), good linearity (R2 = 0.9955–0.9996) and low detection limits (1.4–11 pg mL?1). High enrichment factors were achieved ranging from 930 to 1510. The results show that the developed method is suitable for trace level monitoring of OPPs in environmental water samples.  相似文献   

20.
Magnetic solid-phase extraction (MSPE) employing a metal–organic framework (Fe3O4@UiO-66-OH) combined with high-performance liquid chromatography was developed for the determination of trace diuretics in urine. The structure and properties of Fe3O4@UiO-66-OH were investigated using X-ray diffraction, infrared spectroscopy, scanning electron microscopy and vibrating sample magnetometry. Magnetic solid-phase extraction conditions, such as adsorbent amount and solution pH, were optimized using response surface methodology. Under the optimal conditions, the method resulted in excellent linearity with a high correlation coefficient (r > 0.99), satisfactory intraday repeatability (1.78–2.99%), low limits of detection (0.08–0.23 ng/ml), and good recoveries in urine samples (between 93.5 and 103%). Fe3O4@UiO-66-OH based on MSPE is a novel pretreatment technique for the detection of trace diuretics in urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号