首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A target-induced structure-switching electrochemical aptasensor for sensitive detection of ATP was successfully constructed which was based on exonuclease III-catalyzed target recycling for signal amplification. With the existence of ATP, methylene blue (MB) labeled hairpin DNA formed G-quadruplex with ATP, which led to conformational changes of the hairpin DNA and created catalytic cleavage sites for exonuclease III (Exo III). Then the structure-switching DNA hybridized with capture DNA which made MB close to electrode surface. Meanwhile, Exo III selectively digested aptamer from its 3′-end, thus G-quadruplex structure was destroyed and ATP was released for target recycling. The Exo III-assisted target recycling amplified electrochemical signal significantly. Fluorescence experiment was performed to confirm the structure-switching process of the hairpin DNA. In fluorescence experiment, AuNPs–aptamer conjugates were synthesized, AuNPs quenched fluorescence of MB, the target-induced structure-switching made Exo III digested aptamer, which restored fluorescence. Under optimized conditions, the proposed aptasensor showed a linear range of 0.1–20 nM with a detection limit of 34 pM. In addition, the proposed aptasensor had good stability and selectivity, offered promising choice for the detection of other small molecules.  相似文献   

2.
《Analytical letters》2012,45(16):2439-2453
Abstract

A sensitive electrochemical biosensor was designed for determination of aflatoxin B1 (AFB1) using a copper-based metal-organic framework (Cu-MOF), which has strong electrochemical activity and exonuclease III (Exo III)-assisted recycling for dual signal amplification. Hairpin DNA (S1) was immobilized on the electrode. The AFB1 was recognized by aptamer DNA (S2) and complementary DNA (S3) was released. The S3 hybridized with the hairpin S1 to form the Exo III hydrolyzed double-stranded DNA, leaving a partial sequence of hairpin DNA (S1′) on the electrode and releasing S3 for the next cycle of the opening and digestion of hairpin S1. The amplified S1′ then was able to combine with more signal probes. Cu-MOF bond gold nanoparticles (AuNPs) by -NH2 were immobilized to capture DNA (S4) to obtain Cu-MOF/AuNPs/S4. This signal probe Cu-MOF/AuNPs/S4 was able to hybridize with the electrode and generate an amplified electrochemical signal. Under the optimized conditions, this electrochemical biosensor for AFB1 exhibited a low detection limit of 6.7?×?10?7?ng/mL at a signal-to-noise equal to 3 and a wide linear range from 10?6 to 1?ng/mL. The biosensor was also used to analyze AFB1-spiked beer sample with recovery values between 96% and 103%. This method has the potential to become a valuable technology for detecting various toxins by the selection of the appropriate aptamer DNA.  相似文献   

3.
In this work a partially reduced graphene oxide (p‐RGO) modified carbon ionic liquid electrode (CILE) was prepared as the platform to fabricate an electrochemical DNA sensor, which was used for the sensitive detection of target ssDNA sequence related to transgenic soybean A2704‐12 sequence. The CILE was fabricated by using 1‐butylpyridinium hexafluorophosphate as the binder and then p‐RGO was deposited on the surface of CILE by controlling the electroreduction conditions. NH2 modified ssDNA probe sequences were immobilized on the electrode surface via covalent bonds between the unreduced oxygen groups on the p‐RGO surface and the amine group at the 5′‐end of ssDNA, which was denoted as ssDNA/p‐RGO/CILE and further used to hybridize with the target ssDNA sequence. Methylene blue (MB) was used as electrochemical indicator to monitor the DNA hybridization. The reduction peak current of MB after hybridization was proportional to the concentration of target A2704‐12 ssDNA sequences in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 2.9×10?13 mol/L (3σ). The electrochemical DNA biosensor was further used for the detection of PCR products of transgenic soybean with satisfactory results.  相似文献   

4.
Based on graphene (GR), TiO2 nanorods, and chitosan (CTS) nanocomposite modified carbon ionic liquid electrode (CILE) as substrate electrode, a new electrochemical DNA biosensor was effectively fabricated for the detection of the transgenic soybean sequence of MON89788. By using methylene blue (MB) as hybridization indicator for monitoring the hybridization with different ssDNA sequences, the differential pulse voltammetric response of MB on DNA modified electrodes were recorded and compared. Due to the synergistic effects of TiO2 nanorods and GR on the electrode surface, the electrochemical responses of MB were greatly increased. Under optimal conditions the differential pulse voltammetric response of the target ssDNA sequence could be detected in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 7.21×10?13 mol/L (3σ). This electrochemical DNA biosensor was further applied to the polymerase chain reaction (PCR) product of transgenic soybeans with satisfactory results.  相似文献   

5.
A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3′-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully.  相似文献   

6.
《Electroanalysis》2005,17(23):2182-2189
An electrochemical DNA biosensor was fabricated by immobilizing DNA probe on aluminum ion films that were electrodeposited on the surface of the stearic acid‐modified carbon paste electrode (CPE). DNA immobilization and hybridization were characterized with cyclic voltammetry (CV) by using methylene blue (MB) as indicator. MB has a couple of well‐defined voltammetric redox peaks at the CPE. The currents of redox peaks of MB decreased after depositing aluminum ion films on the CPE (Al(III)/CPE) and increased dramatically after immobilizing DNA probe (ssDNA/Al(III)/CPE). Hybridization of DNA probe led to a marked decrease of the peak currents of MB, which can be used to detect the target single‐stranded DNA. The conditions for the preparation of Al(III)/CPE, and DNA immobilization and hybridization were optimized. The specific sequences related to bar transgene in the transgenic corn and the PCR amplification of CP4 epsps gene from the sample of transgenic roundup ready soybean were detected by differential pulse voltammetry (DPV) with this new electrochemical DNA biosensor. The difference between the peak currents of MB at ssDNA/Al(III)/CPE and that at hybridization DNA modified electrode (dsDNA/Al(III)/CPE) was applied to determine the specific sequence related to the target bar gene with the dynamic range comprised between 1.0×10?7 mol/L to 1.0×10?4 mol/L. A detection limit of 2.25×10?8 mol/L of oligonucleotides can be estimated.  相似文献   

7.
DNA ligases are essential enzymes in all cells and have been proposed as targets for novel antibiotics. Efficient DNA ligase activity assays are thus required for applications in biomedical research. Here we present an enzyme-linked electrochemical assay based on two terminally tagged probes forming a nicked junction upon hybridization with a template DNA. Nicked DNA bearing a 5' biotin tag is immobilized on the surface of streptavidin-coated magnetic beads, and ligated product is detected via a 3' digoxigenin tag recognized by monoclonal antibody-alkaline phosphatase conjugate. Enzymatic conversion of napht-1-yl phosphate to napht-1-ol enables sensitive detection of the voltammetric signal on a pyrolytic graphite electrode. The technique was tested under optimal conditions and various situations limiting or precluding the ligation reaction (such as DNA substrates lacking 5′-phosphate or containing a base mismatch at the nick junction, or application of incompatible cofactor), and utilized for the analysis of the nick-joining activity of a range of recombinant Escherichia coli DNA ligase constructs. The novel technique provides a fast, versatile, specific, and sensitive electrochemical assay of DNA ligase activity.
Figure
Enzyme-linked electrochemical detection of a ligated DNA strand using magnetic beads. Anti-digoxigenin antibody conjugate with alkaline phosphatase (ALP) is bound to digoxigenin label of the ligated product immobilized at streptavidin-coated magnetic beads via biotin tag on its opposite end. Then substrate for ALP (napht-1-yl phosphate) is added and enzymatically converted to napht-1-ol, an electroactive indicator, which is subsequently detected electrochemically at a carbon electrode  相似文献   

8.
We describe a supersandwich type of electrochemical DNA biosensor based on the use of a glassy carbon electrode (GCE) modified with reduced graphene oxide (rGO) sheets that are decorated with gold nanoparticles (Au NPs). Thiolated capture DNA (probe DNA) was covalently linked to the Au NPs on the surface of the modified GCE via formation of Au-S bonds. In presence of target DNA, its 3′ terminus hybridizes with capture probe and the 5′ terminus hybridizes with signal probe labeled with Methylene Blue (MB). On increasing the concentration of target DNA, hybridization between signal probe and target DNA results in the formation of three different DNA sequences that form a supersandwich structure. The signal intensity of MB improves distinctly with increasing concentrations of target DNA in the sample solution. The assembling process on the surface of the electrode was studied by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was used to monitor the hybridization event by measuring the changes in the peak current for MB. Under optimal conditions, the peak currents in DPV for MB linearly increase with the logarithm of target DNA concentration in the range from 0.1 μM to1.0 fM, with a detection limit of 0.35 fM (at an signal/noise ratio of 3). This biosensor exhibits good selectivity, even over single-base mismatched target DNA.
Figure
We designed a sensitive supersandwich electrochemical DNA biosensor based on rGO sheets decorated with Au NPs. SEM and electrochemical methods were employed to investigate the assembly process of the biosensor. The biosensor exhibits high sensitivity and good specificity.  相似文献   

9.
利用标记二茂铁基团的DNA(T-DNA)分子作为信号探针, 基于端粒酶特异性延长其底物链(TS)所引发的链替代反应, 建立了一种检测端粒酶活性的电化学信号放大法. 将巯基化的发夹型DNA分子(H-DNA)通过金-硫键自组装于金电极表面, 辅助DNA(A-DNA)与二茂铁修饰的T-DNA部分互补杂交形成双链AT-DNA; 当端粒酶存在时, 可在TS的3′末端合成TTAGGG的重复序列; A-DNA与TS延长链杂交置换出T-DNA; T-DNA与发夹H-DNA杂交使得二茂铁靠近电极表面; 一条TS延长链可以释放出多条T-DNA, 将二茂铁富集到金电极表面, 从而实现信号放大检测端粒酶活性. HeLa细胞个数在5~100范围内与电流值成正比, 最低可检测5个HeLa细胞中端粒酶的活性. 因此, 本文建立了一种简单灵敏检测端粒酶活性的电化学方法.  相似文献   

10.
In this report, a simple electrochemical biosensor has been developed for highly sensitive and specific detection of DNA based on hairpin assembly amplification. In the presence of target DNA, the biotin‐labelled hairpin H1 is opened by hybridizing with target DNA through complementary sequences. Then the opened hairpin H1 assembles with the hairpin H2 to displace the target DNA, generating H1‐H2 complex. The displaced target DNA could trigger the next cycle of hairpins assembly, resulting in the generation of numerous H1‐H2 complexes. Subsequently, the H1‐H2 complex hybridizes with the capture probe immobilized on the electrode. Finally, the streptavidin alkaline phosphatase (ST‐ALP) binds to biotin in the capture probe‐H1‐H2 complex and catalyzes the substrate α‐naphthol (α‐NP) to produce electrochemical signal. To make a more fascinating hairpin assembly amplification strategy in signal amplification, mismatched base sequences are designed in hairpin H2 to decrease non‐specific binding of the hairpin substrates. The developed biosensor achieves a sensitivity of 20 pM with a linear range from 25 pM to 25 nM, and shows high selectivity toward single‐base mismatch. Thus, the proposed electrochemical biosensor might have the potential for early clinical diagnosis and therapy.  相似文献   

11.
A new strategy for homogeneous protein detection is developed based on a cucurbit[7]uril (CB[7]) functionalized electrode. The analytical procedure consists of the binding of target protein to its aptamer in the test solution, followed by an exonuclease-catalyzed digestion of methylene blue (MB) tag labeled DNA oligonucleotides. Since CB[7] molecules immobilized on the electrode may efficiently capture the released MB-labeled nucleotides, the MB tags are concentrated to the electrode surface and subsequently yield highly sensitive electrochemical signal, which is related to the concentration of the target protein. The method combines the host–guest properties of CB[7] with the immobilization-free homogeneous assay, providing a powerful tool for protein detection. Taking the detection of osteopontin as an example, the proposed method can have a linear response to the target protein in a range from 50 to 500 ng mL−1 with a detection limit of 10.7 ng mL−1. It can also show high specificity and good reproducibility, and can be used directly for the assay of osteopontin in serum samples.  相似文献   

12.
Herein, we introduced a tungsten disulfide (WS2) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3′-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS2 nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS2 nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics.  相似文献   

13.
A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6]3+, RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL−1 to 10 U mL−1, with a detection limit down to 0.03 U mL−1. Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence.  相似文献   

14.
15.
《Electroanalysis》2018,30(5):955-961
Herein, a sensitive electrochemical Pb2+ sensor was developed which based on DNA‐functionalized Au nanoparticles(AuNPs) and nanocomposite modified electrode. The DNA‐functionalized AuNPs includes two types of DNA, namely a Pb2+‐mediated DNAzyme comprising a biotin labeled‐enzyme DNA and a substrate strand DNA with a typical stem‐loop structure, and a ferrocene‐labeled linear signal DNA. Without Pb2+, the hairpin loop impeded biotin binding to avidin on the electrode. However,when the goal Pb2+ exists, the substratum strand was divided into two fragments that lead to the enzyme strand was substratumed on the electrode and biotin was admited by avidin, bringing about DNA‐functionalized AuNP(AuNPs) deposition on the electrode surface.The differential pulse voltammetry (DPV) was used to measure electrochemical response signals connect to signal DNA.For the amplification characters of the DNA‐functionalized AuNPs and nanocomposite, the electrochemical detection signal of Pb2+ was greatly improved and revealed high specificity. Under optimum conditions, the resultant biosensor bringed out a high sensitivity and selectivity for the determination of Pb2+. The proposed method was able to detect as low as picomolar Pb2+ concentrations.  相似文献   

16.
The detection of biomarkers is of great significance in the diagnosis of numerous diseases,especially cancer.Herein,we developed a sensitive and universal fluorescent aptasensor strategy based on magnetic beads,DNA G-quadruplex,and exonuclease Ⅲ(Exo Ⅲ).In the presence of a target protein,a label-free single strand DNA(ssDNA)hybridized with the aptamer was released as a trigger DNA due to specific recognition between the aptamer and target.Subsequently,ssDNA initiates the ExoⅢ-aided recycling to amplify the fluorescence signal,which was caused by N-methylmesoporphyrin IX(NMM)insertion into the G-quadruplex structure.This proposed strategy combines the excellent specificity between the aptamer and target,high sensitivity of the fluorescence signal by G-quadruplex and ExoⅢ-aided recycling amplification.We selected(50-1200 nmol/L)MUC1,a common tumor biomarker,as the proof-of-concept target to test the specificity of our aptasenso r.Results reveal that the sensor sensitively and selectively detected the target protein with limits of detection(LODs)of 3.68 and 12.83 nmol/L in buffer solution and 10%serum system,respectively.The strategy can be easily applied to other targets by simply substituting corresponding aptamers and has great potential in the diagnosis and monitoring of several diseases.  相似文献   

17.
A novel ratiometric electrochemical sensor for sensitive and selective determination of deoxyribonucleic acid (DNA) had been developed based on signal-on and signal-off strategy. The target DNA hybridized with the loop portion of ferrocene (Fc) labeled hairpin probe immobilized on the gold electrode (GE), the Fc away from the surface of GE and the methylene blue (MB) was attached to an electrode surface by hybridization between hairpin probe and MB labeled primer. Such conformational changes resulted in the oxidation peak current of Fc decreased and that of MB increased, and the changes of dual signals are linear with the concentration of DNA. Furthermore, with the help of strand-displacement polymerization, polymerase catalyzed the extension of the primer and the sequential displacement of the target DNA, which led to the release of target and another polymerization cycle. Thus the circular strand displacement produced the multiplication of the MB confined near the GE surface and Fc got away from the GE surface. Therefore, the recognition of target DNA resulted in both the “signal-off” of Fc and the “signal-on” of MB for dual-signal electrochemical ratiometric readout. The dual signal strategy offered a dramatic enhancement of the stripping response. The dynamic range of the target DNA detection was from 10−13 to 10−8 mol L−1 with a detection limit down to 28 fM level. Compared with the single signaling electrochemical sensor, the dual-signaling electrochemical sensing strategy developed in this paper was more selective. It would have important applications in the sensitive and selective electrochemical determination of other small molecules and proteins.  相似文献   

18.
The article reports an aptamer based assay for cocaine by employing graphene oxide and exonuclease III-assisted signal amplification. It is based on the following scheme and experimental steps: (1) Exo III can digest dsDNA with blunt or recessed 3-terminus, but it has limited activity to ssDNA or dsDNA with protruding 3-terminus; (2) GO can absorb the FAM-labeled ssDNA probe and quench the fluorescence of probe, while the affinity between FAM-labeled mononucleotide and GO is negligible; (3) Cocaine aptamer can be split into two flexible ssDNA pieces (Probe 1 and Probe 2) without significant perturbation of cocaine-binding abilities; (4) The triple complex consisting of Probe 1, Probe 2 and cocaine can be digested by Exo III with the similar efficiency as normal dsDNA. Cocaine aptamer is split into two flexible ssDNA pieces (Probe 2 and 3′-FAM-labeled Probe 1). Cocaine can mediate the cocaine aptamer fragments forming a triplex. The triple complex has unique characteristic with 3′-FAM-labeled blunt end at the Probe 1 and 3′-overhang end at Probe 2. If exonuclease III is added, it will catalyze the stepwise removal of fluorescein (FAM) labeled mononucleotides from the 3-hydroxy termini of the special triplex complex, resulting in liberation of cocaine. The cocaine released in this step can produce a new cleavage cycle, thereby leading to target recycling. Through such a cyclic bound-hydrolysis process, small amounts of cocaine can induce the cleavage of a large number of FAM-labeled probe 1. The cleaved FAM-labeled mononucleotides are not adsorbed on the surface of graphene oxide (GO), so a strong fluorescence signal enhancement is observed as the cocaine triggers enzymatic digestion. Under optimized conditions, the assay allows cocaine to be detected in the 1 to 500 nM concentration range with a detection limit of 0.1 nM. The method was applied to the determination of cocaine in spiked human plasma, with recoveries ranging from 92.0 to 111.8 % and RSD of <12.8 %.
Graphical abstract Aptamer based fluorescent cocaine assay based on graphene oxide and exonuclease III-assisted signal amplification
  相似文献   

19.
This work presents a sensitive voltammetric method for determination of folic acid by adsorbing methylene blue onto electrodeposited reduced graphene oxide film modified glassy carbon electrode (MB/ERGO/GCE) in 100 mM KCl‐10 mM sodium phosphate buffer solution (pH 7.40). The surface morphology of the MB/ERGO/GCE modified electrode was characterized using scanning electron microscopy, displays that both MB and ERGO distributed homogeneously on the surface of GCE. The MB/ERGO/GCE modified electrode shows more favorable electron transfer kinetics for potassium ferricyanide and potassium ferrocyanide probe molecules, which are important electroactive compounds, compared with bare GCE, MB/GCE, and ERGO/GCE. The electrochemical behaviors of folic acid at MB/ERGO/GCE were investigated by cyclic voltammetry, suggesting that the modified electrode exhibited excellent electrocatalytic activity towards folic acid compared with other electrodes. Under physiological condition, the MB/ERGO/GCE modified electrode showed a linear voltammetric response from 4.0 μM to 167 μM for folic acid, and with the detection limit of 0.5 μM (S/N=3). The stability, reproducibility and anti‐interference ability of the modified electrode were examined. The developed method has been successfully applied to determination of FA in tablets with a satisfactory recovery from 96 % to 100 %. The work demonstrated that the electroactive MB adsorbing onto graphene modified electrode showed an enhanced electron transfer property and a high resolution capacity to FA.  相似文献   

20.
《Electroanalysis》2018,30(8):1791-1800
We report the effect of electrochemical anodization on the properties of monolayer graphene as the main aim of this research and consequently using the resulting label‐free impedimetric biosensor for DNA sequences detection. Monolayer graphene was grown by chemical vapor deposition (CVD) with methane as precursor on copper foil, transferred onto a glassy carbon electrode and electrochemically anodized. Raman spectroscopy and X‐Ray photo electron spectroscopy revealed enhancement of defect density, roughness and formation of C−O−C, C−O−H and C=O functional groups after anodization. Amine‐terminated poly T probe was linked covalently to the carboxylic groups of anodized graphene by the zero‐length linker to fabricate the impedance‐based DNA biosensor. The anodized graphene electrode demonstrated a superior performance for electrochemical impedance detection of DNA. The DNA biosensor showed a large linear dynamic range from 2.0×10−18 to 1.0×10−12 M with a limit of detection of 1.0×10−18 M using electrochemical impedance spectroscopy (EIS) method. Equivalent circuit modeling shows that DNA hybridization is detected through a change in charge transfer resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号