首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly sensitive and simple electroanalytical methodology is presented using an in-situ bismuth film modified edge plane pyrolytic graphite electrode (BiF-EPPGE) which is exemplified with the simultaneous determination of cadmium(II) and lead(II). Square-wave anodic stripping voltammetry is utilised with the effects of several experimental variables studied. Simultaneous additions of cadmium(II) and lead(II) were investigated where two linear ranges between 0.1-100 and 0.1-300 microg/L and also detection limits of 0.062 and 0.084 microg/L were obtained, respectively. The method was then successfully applied to the simultaneous determination of cadmium(II) and lead(II) in spiked river water, where recoveries of 100.5 and 98% were obtained, respectively. This electroanalytical protocol using edge plane pyrolytic graphite electrodes is one of the simplest methodologies to date using non-mercury based electrodes and is simpler and cheaper than alternatives such as carbon nanotube electrode arrays, suggesting the use of edge plane pyrolytic graphite electrode for routine sensing.  相似文献   

2.
Different graphitic carbon-based electrode materials were evaluated for direct electro-oxidation of clindamycin and electroanalytical parameters such as sensitivity, residual background current, and signal-tobackground current ratio were compared to select the best one for the clindamycin electroanalysis. Such electrode materials include glassy carbon, carbon paste, pyrolytic graphite (edge-plane and basal-plane), carbon nanotube, reduced graphene oxide, and carbon black. The edge-plane pyrolytic graphite electrode after a simple and fast electrochemical pretreatment showed superior performance compared with the other carbon electrodes. Raman and Fourier transform infrared spectroscopy were employed to analyze the surface microstructure and chemical bonding of the carbon materials and scanning electron microscopy was used to study their surface morphologic features. The applicability of the electrochemically activated edge-plane pyrolytic graphite electrode for the determination of clindamycin in pharmaceutical formulations and human urine samples was evaluated.  相似文献   

3.
A sensitive electroanalytical method is presented for the determination of 4‐hexylresorcinol using adsorptive stripping voltammetry (AdsSV) at a multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode (MWCNT‐BPPGE). This method is also extended to the use of a MWCNT modified screen‐printed electrode (MWCNT‐SPE), thereby demonstrating that this approach can easily be incorporated into a facile and inexpensive electrochemical sensor.  相似文献   

4.
《Electroanalysis》2005,17(18):1627-1634
The behavior of chloride, bromide and iodide at edge plane pyrolytic graphite electrodes has been explored in aqueous acid solutions. The voltammetric response in each case has been compared with that of basal plane pyrolytic graphite, glassy carbon and boron‐doped diamond. The electrochemical oxidation of chloride is found to only occur on boron‐doped diamond while the electrochemical reversibility for the oxidation of bromide on edge plane pyrolytic graphite is similar to that seen at glassy carbon whilst being superior to basal plane pyrolytic graphite and boron‐doped diamond. In the case of iodide oxidation, edge plane and basal plane pyrolytic graphite and glassy carbon display similar electrode kinetics but are all superior to boron‐doped diamond. The analytical possibilities were examined using the edge plane pyrolytic graphite electrode for both iodide and bromine where is was found that, based on cyclic voltammetry, detection limits in the order of 10?6 M are possible.  相似文献   

5.
《Electroanalysis》2005,17(8):655-661
The first examples of using edge plane pyrolytic graphite electrodes for anodic and cathodic stripping voltammetry (ASV and CSV) are presented, notably the ASV of silver and the CSV of manganese. In the former example, detection limits for silver (based on 3σ) of 8.1 nM and 0.185 nM for 120 s and 300 s accumulation time, respectively, were achievable using the edge plane electrode, which were superior to those observed on glassy carbon, basal plane pyrolytic graphite and boron‐doped diamond electrodes. In the second example, a detection limit for manganese of 0.3 μM was possible which was comparable with that achievable with a boron‐doped diamond electrode but with an increased sensitivity. Comparison of the edge plane pyrolytic graphite electrode with boron‐doped diamond electrodes reveals that the edge plane electrode has comparable detection limits and sensitivities whilst exhibiting a lower signal‐to‐noise ratio and large potential window for use in trace analysis suggesting boron‐doped diamond can be conveniently replaced by edge plane pyrolytic graphite as an electrode material in many applications.  相似文献   

6.
Pyrolytic carbon films (PCFs) were prepared by chemical vapor deposition (CVD) at different deposition temperatures. As an example of using PCF electrode in electroanalysis, the direct electrooxidation of ascorbic acid (AA) at the PCF electrode was investigated and compared with common carbon‐based electrodes such as glassy carbon (GC), edge plane pyrolytic graphite (EPPG), and basal plane pyrolytic graphite (BPPG) electrodes. It was found that the PCF electrodes prepared under deposition temperatures higher than 1050 °C showed a higher sensitivity and lower overpotential compared to the other carbon electrodes. The electrode was successfully applied for determination of AA in real samples.  相似文献   

7.
We explore and contrast the electroanalytical performance of a commercially available CVD grown graphene electrode with that of edge- and basal-plane pyrolytic graphite electrodes constructed from highly ordered pyrolytic graphite for the sensing of biologically important analytes, namely β-nicotinamide adenine dinucleotide (NADH) and uric acid (UA). We demonstrate that for the analytes studied here, in the best case, the electroanalytical performance of the CVD-graphene mimics that of edge plane pyrolytic graphite, suggesting no significant advantage of utilising CVD-graphene in this context.  相似文献   

8.
Banks CE  Compton RG 《The Analyst》2005,130(9):1232-1239
The electrocatalytic properties of multi-walled carbon nanotube modified electrodes toward the oxidation of NADH are critically evaluated. Carbon nanotube modified electrodes are examined and compared with boron-doped diamond and glassy carbon electrodes, and most importantly, edge plane and basal pyrolytic graphite electrodes. It is found that CNT modified electrodes are no more reactive than edge plane pyrolytic graphite electrodes with the comparison with edge plane and basal plane pyrolytic graphite electrodes allowing the electroactive sites for the electrochemical oxidation of NADH to be unambiguously determined as due to edge plane sites. Using these highly reactive edge plane sites, edge plane pyrolytic graphite electrodes are examined with cyclic voltammetry and amperometry for the electroanalytical determination of NADH. It is demonstrated that a detection limit of 5 microM is possible with cyclic voltammetry or 0.3 microM using amperometry suggesting that edge plane pyrolytic graphite electrodes can conveniently replace carbon nanotube modified glassy carbon electrodes for biosensing applications with the relative advantages of reactivity, cost and simplicity of preparation. We advocate the routine use of edge plane and basal plane pyrolytic graphite electrodes in studies utilising carbon nanotubes particularly if 'electrocatalytic' properties are claimed for the latter.  相似文献   

9.
《Electroanalysis》2005,17(17):1529-1533
The direct electrochemical oxidation of ascorbic acid at an edge plane pyrolytic graphite electrode (EPPG) is investigated and compared with other common carbon‐based electrodes, specifically glassy carbon, boron doped diamond and basal plane pyrolytic graphite. It is found that the EPPG electrode shows a significantly higher degree of electrochemical reversibility than the other electrode substrates giving rise to an analytically optimized limit of detection and sensitivity of 7.1×10?5 M and 0.065 A M?1 respectively.  相似文献   

10.
The electrochemical generation of nitrosophenyl groups covalently attached to graphite powder (nitrosophenylcarbon) from carbon powder chemically modified with nitrophenyl groups and their subsequent reaction with thiols (glutathione, cysteine and homocysteine) has been investigated as a method by which the later can be quantified. The modified carbon powder was immobilized onto a basal plane pyrolytic graphite electrode and characterized by cyclic voltammetry by scanning between 1.0 V and ?1.0 V vs. SCE in phosphate buffer (pH 7). Square wave voltammetry (SWV) was used for the determination of thiols and the SWV parameters were optimized. The nitrosophenylcarbon is electrogenerated from nitrophenylcarbon and can chemically oxidize thiols to disulfides. Subsequent reduction of nitrosophenylcarbon to phenylhydroxylaminecarbon during the square wave voltammetric process leads to a decrease in the reductive current. This can be correlated to the concentration of thiol present within the medium. The cyclic voltammetric responses of basal plane pyrolytic graphite electrode, edge plane pyrolytic graphite electrode, glassy carbon electrode and boron‐doped diamond electrode in the direct oxidation of thiols were also investigated and all were found to have a significantly higher overpotential compared to the described method using nitrosophenylcarbon.  相似文献   

11.
For the first time we report on the electrochemical characteristics of nanometer sized polyhedral graphite onions dispersed amongst arc‐MWCNTs. These are formed during the electric arc discharge method of producing ultrapure MWCNTs (arc‐MWCNTs). The carbon onions are randomly dispersed amongst the arc‐MWCNTs which are produced with very little amorphous carbon deposits or other unwanted impurities and are formed as closed‐ended tubes. By comparison with commercially available open‐ended hollow‐tube multiwalled carbon nanotubes made using the chemical vapor deposition method (cvd‐MWCNTs), a glassy carbon electrode (GCE), an edge‐plane pyrolytic graphite electrode (eppg) and basal plane pyrolytic graphite (bppg) electrode, we can speculate that it is the edge‐plane‐like defect sites that are the electroactive sites responsible for the apparent ‘electrocatalysis’ seen with a wide range of analytes including: ferrocyanide, ruthenium hexaamine(III), nicotinamide adenosine dinucleotide (NADH), epinephrine, norepinephrine, cysteine, and glutathione. The arc‐MWCNTs themselves are produced as closed‐ended tubes with very few, if any, edge‐plane‐like defect sites evident in their HRTEM characterization. Therefore we speculate that it is the carbon onions dispersed amongst the arc‐MWCNTs which have incomplete graphite shells or a rolled‐up ‘Swiss‐roll’ structures that posses the edge‐plane‐like defect sites and are responsible for the observed voltammetric responses. Carbon onions are no more or no less ‘electrocatalytic’ than open‐ended MWCNTs which in turn are no more electrocatalytic than an eppg electrode. As the carbon onions are ubiquitous in MWCNTs formed using the arc‐discharge method the authors advise that caution should be taken before assigning any electrocatalytic behavior to the MWCNTs themselves as any observed electrocatalysis likely arises from the carbon onion impurities.  相似文献   

12.
We report the comparison of electron transfer kinetic parameters of the ferrocene redox couple in both acetonitrile and in room temperature ionic liquid (RTIL) 1‐butyl‐3‐methylimidiazonium hexafluorophosphate ([C4mim] [PF6]), using edge plane pyrolytic graphite (EPPG), basal plane pyrolytic graphite (BPPG) and glassy carbon (GC) electrodes. Each electrode surface was characterized using SEM and AFM and the surface morphology was analyzed in terms of surface heterogeneity including the distribution of edge plane defects. The experimental data were modeled using both one and two dimensional simulations to correlate the electron transfer parameters obtained with the different surface structure of each electrode. Furthermore, we show that the diffusion domain approximation (commonly used to accurately simulate electron transfer kinetics at graphitic surfaces) breaks down when a BPPG electrode is used in RTIL and demonstrate the near impossibility of assigning rate constant to the basal plane surface.  相似文献   

13.
《Electroanalysis》2006,18(5):449-455
The direct electrochemical oxidation of ammonia in propylene carbonate is reported for the first time. The voltammetric responses at glassy carbon, boron‐doped diamond, edge and basal plane pyrolytic graphite electrodes are explored and compared with the outcome indicating that the optimum electrode substrate for analytical purposes in this solvent is glassy carbon. Proof‐of‐concept is shown for the amperometric detection of ammonia using basal plane pyrolytic graphite electrodes abrasively modified with glassy carbon spheres. Given the significantly lower vapor pressure of propylene carbonate in comparison to water the implications for extending the life‐time of practical sensors are evident. Propylene carbonate shows a wide potential window with glassy carbon electrodes permitting this approach to be used for a potential diversity of gaseous analytes.  相似文献   

14.
The voltammetric response of nitrogen dioxide in aqueous sulfuric acid using an edge plane pyrolytic graphite electrode has been explored and contrasted with that from basal plane pyrolytic graphite, glassy carbon or boron-doped diamond electrodes. Edge plane graphite electrode is found to produce an excellent voltammetric signal in comparison with other carbon-based electrodes exhibiting a well-defined analytically useful voltammetric redox couple in 2.5 M sulfuric acid which is absent on the alternative electrodes.  相似文献   

15.
《Electroanalysis》2005,17(12):1025-1034
A series of modified electrodes were prepared both via solvent evaporation and electrochemical cycling of azobenzene and derivatives and various quinones and assessed for their suitability as oxygen reduction electrocatalysts and sonoelectrocatalysts. Glassy carbon electrodes were modified via solvent evaporation with 1,2‐dihydroxyanthraquinone and 1,2‐diazonium‐9,10‐anthraquinone while edge plane and basal plane pyrolytic graphite electrodes were modified by the same procedure with 9,10‐phenanthraquinone. The stability of the attached moiety was accessed in each case under ultrasound. For comparison the same electrode substrates were modified with 9,10‐phenanthraquinone by electrochemical cycling and also exposed to ultrasound. The observed results suggest the use of the glassy carbon electrodes modified with azobenzene and derivatives via solvent evaporation as the optimal carbon based sonoelectrocatalysts for oxygen reduction in term of stability under insonation and high catalytic rate.  相似文献   

16.
Brownson DA  Foster CW  Banks CE 《The Analyst》2012,137(8):1815-1823
We explore the use of graphene modified electrodes towards the electroanalytical sensing of various analytes, namely dopamine hydrochloride, uric acid, acetaminophen and p-benzoquinone via cyclic voltammetry. In line with literature methodologies and to investigate the full-implications of employing graphene in this electrochemical context, we modify electrode substrates that exhibit either fast or slow electron transfer kinetics (edge- or basal- plane pyrolytic graphite electrodes respectively) with well characterised commercially available graphene that has not been chemically treated, is free from surfactants and as a result of its fabrication has an extremely low oxygen content, allowing the true electroanalytical applicability of graphene to be properly de-convoluted and determined. In comparison to the unmodified underlying electrode substrates (constructed from graphite), we find that graphene exhibits a reduced analytical performance in terms of sensitivity, linearity and observed detection limits towards each of the various analytes studied within. Owing to graphene's structural composition, low proportion of edge plane sites and consequent slow heterogeneous electron transfer rates, there appears to be no advantages, for the analytes studied here, of employing graphene in this electroanalytical context.  相似文献   

17.
Carbon‐based metal‐free electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium have been extensively investigated with the aim of replacing the commercially available, but precious platinum‐based catalysts. For the proper design of carbon‐based metal‐free electrocatalysts for the ORR, it would be interesting to identify the active sites of the electrocatalyst. The ORR was now studied with an air‐saturated electrolyte solution droplet (diameter ca. 15 μm), which was deposited at a specified position either on the edge or on the basal plane of highly oriented pyrolytic graphite. Electrochemical measurements suggest that the edge carbon atoms are more active than the basal‐plane ones for the ORR. This provides a direct way to identify the active sites of carbon materials for the ORR. Ball‐milled graphite and carbon nanotubes with more exposed edges were also prepared and showed significantly enhanced ORR activity. DFT calculations elucidated the mechanism by which the charged edge carbon atoms result in the higher ORR activity.  相似文献   

18.
Moore RR  Banks CE  Compton RG 《The Analyst》2004,129(8):755-758
The first example of using an edge plane pyrolytic graphite electrode in electroanalysis is reported as the determination of homocysteine, N-acetylcysteine, cysteine and glutathione is studied. The response of the electrode in the direct oxidation of thiol moieties is explored and found to be electrocatalytic producing a reduction in the overpotential while having enhanced signal-to-noise characteristics compared to glassy carbon and basal plane pyrolytic graphite electrodes. The effectiveness of the methodology is examined in the determination of cysteine species in a growth tissue media that contains a high number of common biological interferences. The advantageous properties of this electrode for thiol determination lie in its excellent catalytic activity, sensitivity and simplicity.  相似文献   

19.
In this work, edged plane pyrolytic graphite electrode EPPGE was modified with functionalised single‐walled carbon nanotubes and Prussian blue nanoparticles (PB). The modified electrode was characterised by techniques such as TEM, FTIR, XPS, EDX and cyclic voltammetry. The EPPGE‐SWCNT‐PB platform exhibited enhanced electron transport and catalytic efficiency towards the oxidation of Diethylaminoethanethiol (DEAET) and hydrazine compared with the other electrodes studied. The EPPGE‐SWCNT‐PB showed good electrochemical stability in the analytical solution, showing limit of detection in the micromolar range and catalytic rate constant of 3.71×106 and 7.56×106 cm3 mol?1 s?1 for DEAET and hydrazine respectively. The adsorption properties of these analytes that impact on their detection at the SWCNT‐PB film modified electrode were evaluated and discussed.  相似文献   

20.
The oxidation of 2-aminoquinoline was studied at a stationary pyrolytic graphite electrode in methanol-phosphate buffer at 25°C using various electroanalytical techniques. In the entire pH range (2.2–10.4), 2-aminoquinoline is oxidized and exhibits a well defined oxidation peak following a 2e?, 2H+ process to give, 2,2′-azoquinoline as the major product. The linear relationship between peak current at a pyrolytic graphite electrode and concentration indicated that 2-aminoquinoline can be determined in the concentration range 0.1–1.0 mM. On the basis of cyclic voltammetry, spectral studies and controlled-potential coulometry, a mechanism of the electrode process is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号