首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A green chemistry method to nano‐roughen a Pt disk microelectrode has been successfully developed via electrochemical alloying‐dealloying in an ionic liquid bath comprising of ZnCl2 and 1‐ethyl‐3‐methylimidazolium chloride. The nano‐roughened Pt layer possesses bark‐like nanoporous structures characteristic of nano‐sized aggregates separated by nano‐cracks whose width ranging from around 50 to 200 nm. The nano‐roughened microelectrode possesses high surface area and diffusional properties typical of a microelectrode. Electrochemical oxidation and reduction of nitrite have been studied as an example for demonstrating that the nano‐roughened microelectrode is a promising technique for electroanalysis and electrocatalysis applications.  相似文献   

2.
Gold nanostructured screen‐printed carbon electrodes are demonstrated to be suitable transducers for the determination of lead using square‐wave voltammetry. Reproducible gold nanostructures have been obtained by direct electrochemical deposition. A calibration plot from 2.5 to 250 μg/L was obtained in acidic solutions of Pb(II) with a reproducibility of 4% (n=10). The detection limit was 0.09 μg/L of lead. The method is then applied to perform a blood lead analysis by adjusting square‐wave parameters in capillary or venous blood with a minimum sample pretreatment and excellent accuracy and reproducibility.  相似文献   

3.
Electrochemical sensors have drawn significant attention over the last couple of decades because of their ability to improve detection of organic and inorganic analytes found in the field of biotechnology, environmental sciences, medicine, and food quality control. This personal account summarizes the state‐of‐art research carried out in the construction and evaluation of nanostructured metal oxides and zeolite based electrochemical sensors. Metal oxides and zeolite‐based nanomaterials have many unique and extraordinary properties such as tunable redox activity, surface functionalization ability, optimum conductivity, large surface area, biocompatibility and so forth. In this personal account, the current advances in electrochemical sensor applications of metal oxides, zeolite‐based nanomaterials, and their nanocomposites are described for the single and simultaneous determination of organic & inorganic contaminants present in water bodies, physiological bio‐molecules present in human blood & urine samples, and organic contaminants present in food materials.Moreover, concluding section focuses discussion on the future developments and applications of these materials in various emerging technologies.  相似文献   

4.
《Electroanalysis》2018,30(8):1627-1633
Nanostructured gold surfaces were prepared by potentiostatic, potentiodynamic or galvanostatic Au electrodeposition on glassy carbon electrodes. The nanostructured gold electrodes (nsAu/GC) were used for the determination of dopamine (DA) in aqueous media. A directly proportional relationship was found between the peak current for DA (obtained by square wave voltammetry, SWV) and its concentration for all cases. However, the best performance for DA determination was attained with potentiodynamically electrodeposited surfaces. The SWV peak current was linearly dependent on DA concentration up to 10 μM, with a detection limit (3σ) of 0.57 μM, and a correlation coefficient (r) of 0.9966. A study on the effect of common interfering species such as ascorbic acid (AA) and uric acid (UA) on DA determination was also carried out. The use of a nanostructured surface gives rise to peaks for AA and UA that appear at 0.15–0.20 V above the peak potential for DA. The detection limit obtained for dopamine is below 1 μM in the presence of 0.1 mM AA and 0.1 mM UA. Thus, nanostructuring of glassy carbon surfaces with gold conveniently and easily improves the detection of DA in the presence of their principal interfering species.  相似文献   

5.
A simple and sensitive method is described for the electrochemical determination of shikonin, a widely used anti‐tumoral agent, based on its electrochemical oxidation at a nanostructured poly(hydroxymethylated‐3,4‐ethylenedioxy‐thiophene) (PEDOT‐MeOH) electrode, which was fabricated by a facile electropolymerization method. Compared with bare and poly(3,4‐ethylenedioxythiophene) (PEDOT) electrodes, the PEDOT‐MeOH film exhibited a distinctly higher activity for the electrooxidation of shikonin. The PEDOT‐MeOH electrode showed a wide linear response for shikonin in the concentration range from 1.0 nM to 10.0 µM with detection limit of 0.3 nM. Furthermore, the PEDOT‐MeOH electrode displayed high stability, good reproducibility and high sensitivity for the detection of shikonin.  相似文献   

6.
Nanocrystalline zirconium carbonitride (Zr‐C‐N) and zirconium oxide (ZrO2) films were deposited by chemical vapor deposition (CVD) of zirconium‐tetrakis‐diethylamide (Zr(NEt2)4) and ‐tert‐butyloxide (Zr(OBut)4), respectively. The films were deposited on iron substrates and characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The Zr‐C‐N films show blue, golden brown or bronze colours, with colour stability depending upon the precursor composition (pure metal amide or mixed with Et2NH). The deposition temperature showed no pronounced effect on the granular morphology of the Zr‐C‐N films. The XRD data of the films correspond to the formation of carbonitride phase whereas the XPS analyses revealed a strong surface oxidation and incorporation of oxygen in the film. The films deposited using a mixture of Zr(NEt2)4 and Et2NH showed higher N content, better adhesion and scratch resistance when compared to films obtained from the CVD of pure Zr(NEt2)4. Subject to the precursor composition and deposition temperature (550‐750 °C), the microhardness values of Zr‐C‐N films were found to be in the range 2.11‐5.65 GPa. For ZrO2 films, morphology and phase composition strongly depend on the deposition temperature. The CVD deposits obtained at 350 °C show tetragonal ZrO2 to be the only crystalline phase. Upon increasing the deposition temperature to 450 °C, a mixture of tetragonal and monoclinic modifications was formed with morphology made up of interwoven elongated grains. At higher temperatures (550 and 650 °C), pure monoclinic phase was obtained with facetted grains and developed texture.  相似文献   

7.
Min Song  Juan Xu 《Electroanalysis》2013,25(2):523-530
In this study, branched polyethyleneimine (PEI) was covalently linked to carboxylic acid functionalized graphene (GO‐COOH) to form GO‐COOH/PEI composites. Transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectra and thermogravimetric analysis were used to characterize the obtained composites. Electrochemical measurements indicated that the modification of the composites on the electrode could efficiently enhance the voltammetric response, suggesting the potential application for making electrochemical sensors. Moreover, our results also indicated that the electrocatalytic oxidation of ammonia could be observed on the GO‐COOH/PEI composites modified glassy carbon electrode. Consequently, our observations demonstrated that GO‐COOH/PEI composites were excellent materials for electrochemical sensing.  相似文献   

8.
Fe-Cr-Ni合金碱性SCC的电化学预测方法   总被引:1,自引:0,他引:1  
黄春波  吕战鹏  杨武 《电化学》2003,9(3):292-298
应用动电位扫描研究了Fe_Cr_Ni合金 (80 0M)C形环在含硫代硫酸钠杂质的热浓碱溶液中的应力腐蚀破裂 (SCC)行为 .测量了 80 0M合金试片与C形环试样恒电位极化时的稳态溶解电流ist,据此绘制了简化模拟“稳态”恒电位极化曲线 ,并将该极化曲线的ist与低电位下的稳态钝化电流ip之比 (RPD=ist/ip)定义为极化溶解敏感指数 .发现 80 0M合金C形环发生碱性SCC的电位区 (E =- 30~ 4 0mV)处于慢扫阳极极化曲线的钝化区 ,并对应于快扫极化曲线的钝化_过钝化溶解转变区 ;在该敏感电位区 ,试片与C环形试样的ist位于简化的模拟稳态恒电位极化曲线的过钝化区 ,试片与C形环试样两者的极化溶解敏感指数值很接近 (分别为 2 .5 5~ 7.0 3和 2 .5 2~ 6 .0 0 ) .综合稳态溶解电流密度 ,极化溶解敏感指数等有关信息 ,提出了一种碱性SCC的电化学预测方法  相似文献   

9.
《Electroanalysis》2004,16(5):360-366
The performance of a remote stripping sensor based on mercury microelectrodes (MM‐RS) for the in situ detection of trace metals in aquatic systems, was investigated. The submersible device employed here consists of a single mercury‐coated platinum disk microelectrode assembled in a two‐electrode cell configuration, and connected remotely by a 30 m long shielded cable. First, the MM‐RS device is characterized in Ru(NH3) and Pb2+ synthetic aqueous solutions by applying cyclic voltammetry and anodic stripping voltammetry (ASV), respectively. The results obtained show that the small electrode dimensions and the related low currents involved, the long remote connection cable or the use of a two‐electrode system do not cause noise effects or uncompensated resistance problems in the measurements. Using square‐wave voltammetry in the stripping step, linear calibration graphs for Pb2+ ions over the concentration range 1×10?9?5×10?7 M were obtained, and a detection limit, DL, of 0.15 nM was found. The relative standard deviation (RSD), at 5×10?8 M Pb2+ level, was within 5%. The effect of humic acid and of sodium dodecylsulfate surfactants on the stripping responses was also investigated. The performance of the submersible MM‐RS system was tested for the in situ monitoring of the labile fraction of lead and copper on a site of the Lagoon of Venice. In situ Pb2+ and Cu2+ concentrations were monitored for about 8 hours, by leaving the sensor immersed in the lagoon waters (2 m depth) and recording the response every hour. Under these field conditions, reliable in situ data for the labile fraction of these metal ions with a satisfactory precision, the RSD being within 7 and 9 % for lead and copper, respectively, were obtained.  相似文献   

10.
《Electroanalysis》2017,29(12):2810-2817
In this study, the synthesis and characterization of a Cu‐based metal‐organic framework (MOF) [Cu3(BTC)2(H2O)3]n (where BTC=benzene‐1,3,5‐tricarboxylate), known as HKUST‐1, were performed. The Cu‐MOF was applied in the modification of a carbon paste to obtain a biomimetic sensor for the electrochemical determination of catechol. Kinetic assays confirmed that the Cu‐MOF acts as a catalyst for the oxidation of catechol and it can be considered as a catechol oxidase mimetic. Under optimized conditions, the calibration curve for catechol presented a linear range of 8.0×10−7 to 3.2×10−5 mol L−1, with detection limit of=1.0×10−7 mol L−1. The sensor demonstrated good intra‐day repeatability and inter‐electrode reproducibility (relative standard deviations of 3.8 % (n=10) and 4.3 % (n=6), respectively). In the selectivity study, an adequate peak‐to‐peak separation was observed for hydroquinone and uric acid in relation to catechol, demonstrating that this sensor has the potential for use in the simultaneous determination of these compounds. This sensor was successfully applied in the determination of catechol in water samples.  相似文献   

11.
Nanostructured alpha‐nickel hydroxide (α‐Ni(OH)2) immobilized on a Fluorine‐doped Tin Oxide (FTO) surface was explored for the construction of hydrogen peroxide amperometric Flow Injection Analysis (FIA) sensors. Their notable electrocatalytic activity and heterogeneous electron‐transfer rate were confirmed by the appearance of a broad and intense peak associated with the oxidation of hydrogen peroxide and the enhancement of sensibility in hydrodynamic conditions. The α‐Ni(OH)2 electrodes exhibited a broad dynamic range (5×10?6 to 1×10?3 mol L?1), low detection limit (2×10?7 mol L?1), good repeatability (RSD=1.29 % for 20 successive analyses), and a sensitivity greater than 500 µA mmol?1 L?1 cm?2.  相似文献   

12.
Dye‐sensitized solar cells (DSSCs) have attracted growing interest because of their application in renewable energy technologies in developing modern low‐carbon economies. However, the commercial application of DSSCs has been hindered by the high expenses of platinum (Pt) counter electrodes (CEs). Here we use Pt‐free binary Co‐Ni alloys synthesized by a mild hydrothermal strategy as CE materials in efficient DSSCs. As a result of the rapid charge transfer, good electrical conduction, and reasonable electrocatalysis, the power conversion efficiencies of Co‐Ni‐based DSSCs are higher than those of Pt‐only CEs, and the fabrication expense is markedly reduced. The DSSCs based on a CoNi0.25 alloy CE displays an impressive power conversion efficiency of 8.39 %, fast start‐up, multiple start/stop cycling, and good stability under extended irradiation.  相似文献   

13.
A simple and fast electrochemical method was described and evaluated to determine the hazardous compound, 4‐nitrophenol (4NP). In this work, concentration of 4NP was determined by differential wave voltammetry (DPV). A gold electrode (Au) was modified with 3,5‐diamino‐1,2,4‐triazole (35DT). The modified electrode (35DT‐Au) was characterized by using electrochemical impedance spectroscopy (EIS), fouirer transform infrared spektrofotometre (FTIR), cyclic voltammetry (CV) and DPV. The modified electrode showed more sensitivity towards 4NP compared to unmodified one. A wide linear concentration range from 0.24 to 130.6 μM was obtained for 4NP with a detection limit of 0.09 μM. In the reproducibility and repeatability studies, the relative standard deviation (RSD%) values of the method were obtained as 3.72 % and 2.56 %, respectively, which are acceptable values. This proposed method was successfully used for the analysis of 4NP in lake and tap water samples. Simplicity, sensitivity, selectivity and high efficiency of the proposed method can be used in routine analysis of trace amounts of 4NP in polluted waters.  相似文献   

14.
通过硝酸、氢氟酸和盐酸分解试样,高氯酸冒烟驱走硅和氟,最后用盐酸溶解盐类,选择Al(396.152nm)、Ca(315.887nm)作为分析谱线,电感耦合等离子体原子发射光谱(ICP-AES)法测定硅锆合金中的铝和钙。研究了锆离子(0.3mg/mL)和铁离子(0.2mg/mL)共存体系中基体效应和光谱干扰对待测元素测定的影响。结果表明,该质量浓度的锆离子和铁离子对待测元素的测定结果不产生影响。铝和钙的质量浓度在10~50μg/mL,其线性相关系数均不小于0.999,方法中铝和钙的检出限分别为0.009μg/mL和0.006μg/mL。按照实验方法测定硅锆合金中的铝和钙,结果的相对标准偏差(RSD,n=10)分别为0.85%和1.4%。方法适用,结果令人满意。  相似文献   

15.
Performances of a screen‐printed microband electrode prepared by ex situ bismuth deposition are reported. According to the low bismuth toxicity, this electrode represents an environmentally friendly alternative to mercury modified sensors, particularly for on‐field measurements. The electrochemical behaviour of the microband electrode has been studied and is in agreement with microelectrode theory before and after bismuth modification. Sensitive cadmium analysis achieved in nondeaerated and unstirred solutions leads to a detection limit of 1.3 μg L?1 using SWASV for 120 s deposition time. This sensor has been successfully applied to a nontreated river water sample.  相似文献   

16.
It is believed that voltammetry of undiluted red‐ox liquids can lead to the formation of stable thin layers of ionic liquids at the microelectrode surface. Such situation was postulated for several liquids (solvents), however, so far no hard evidence supporting this expectation was obtained. By using electron spin resonance in combination with voltammetric experiments and electrochemical impedance spectroscopy we have shown that the concentration of the cation radicals at the microelectrode surface may be high (nitrobenzene) and the overall resistance of the solution abruptly drops (methanol) when the potential at the microelectrode corresponds to the wave plateau of the undiluted organic liquid. Both facts constitute a good evidence for the formation of microlayers of ionic liquids at the microelectrode surface during electrolysis of undiluted red‐ox systems.  相似文献   

17.
A novel nanostructured copper‐based solid‐phase microextraction fiber was developed and applied for determining the two most common types of phthalate environmental estrogens (dibutyl phthalate and diethylhexyl phthalate) in aqueous samples, coupled to gas chromatography with flame ionization detection. The copper film was coated onto a stainless‐steel wire via an electroless plating process, which involved a surface activation process to improve the surface properties of the fiber. Several parameters affecting extraction efficiency such as extraction time, extraction temperature, ionic strength, desorption temperature, and desorption time were optimized by a factor‐by‐factor procedure to obtain the highest extraction efficiency. The as‐established method showed wide linear ranges (0.05–250 μg/L). Precision of single fiber repeatability was <7.0%, and fiber‐to‐fiber repeatability was <10%. Limits of detection were 0.01 μg/L. The proposed method exhibited better or comparable extraction performance compared with commercial and other lab‐made fibers, and excellent thermal stability and durability. The proposed method was applied successfully for the determination of model analytes in plastic soaking water.  相似文献   

18.
《Electroanalysis》2005,17(20):1806-1815
The first example of using a copper microelectrode array for use in electroanalysis is explored and exemplified with the electroanalytical quantification of nitrate. The analytical approach is based upon the in situ deposition of copper at a boron‐doped diamond (BDD) microelectrode array. The immobilized copper layer is electrocatalytic for nitrate reduction and exhibits an analytically useful range from 1.2 to 124 μM with a marked selectivity for nitrate ion over nitrate, with a limit of detection of 0.76 μM. The analytical applicability was examined through standard addition determinations of nitrate in drinking and river water samples.  相似文献   

19.
《Electroanalysis》2017,29(8):1918-1924
A highly sensitive and selective electrochemical biomimetic sensor was fabricated for fast detection of chloramphenicol (CAP) in honey and milk samples. Platinum thin‐film microelectrode (Pt TFME), which could provide unique electrochemical properties and achieve measurement using very limited solution volumes, was surface‐modified by electropolymerizing o‐phenylenediamine. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the preparation process of CAP‐imprinted poly(o‐phenylenediamine) film and rebinding ability of CAP into the imprinted cavities. The electrochemical properties of the sensor were further investigated with square wave voltammetry (SWV) by using K3Fe(CN)6 as an electroactive probe. The current difference of oxidation peaks of K3Fe(CN)6 had a good linear relationship with the concentration of CAP in the range of 0.9–10 nM. The detection limit was 0.39 nM based on the signal to noise ratio of 3. The developed sensor was successfully applied to determine CAP in honey and milk samples, and the result was in good agreement with that obtained by high performance liquid chromatography‐mass spectrometry (HPLC‐MS). The sensor showed high sensitivity and excellent selectivity to CAP in comparison to other structurally related and/or normally existing antibiotics, and demonstrated great promise for the rapid quantification of CAP in real food samples and field analysis.  相似文献   

20.
Dopamine (DA) is a significant neurotransmitter in the central nervous system, coexisting with uric acid (UA) and ascorbic acid (AA). UA and AA are easily oxidizable compounds having potentials close to that of DA for electrochemical analysis, resulting in overlapping voltammetric response. In this work, a novel molecularly imprinted (MI) electrochemical sensor was proposed for selective determination of DA (in the presence of up to 80‐fold excess of UA and AA), relying on gold nanoparticles (Aunano)‐decorated glassy carbon (GC) electrode coated with poly(carbazole (Cz)‐co‐aniline (ANI)) copolymer film incorporating DA as template (DA imprinted‐GC/P(Cz‐co‐ANI)‐Aunano electrode, DA‐MIP‐Aunano electrode). The DA recognizing sensor electrode showed great electroactivity for analyte oxidation in 0.2 mol L?1 pH 7 phosphate buffer. Square wave voltammetry (SWV) was performed within 10?4–10?5 mol L?1 of DA, of which the oxidation peak potential was observed at 0.16 V. The limit of detection (LOD) and limit of quantification (LOQ) were 2.0×10?6 and 6.7×10?6 mol L?1, respectively. Binary and ternary synthetic mixtures of DA‐UA, DA‐AA and DA‐UA‐AA yielded excellent recoveries for DA. Additionally, DA was quantitatively recovered from a real sample of bovine serum spiked with DA, and determined in concentrated dopamine injection solution. The developed SWV method was statistically validated against a literature potentiodynamic method using a caffeic acid modified‐GC electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号