首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and efficient ultrafiltration–liquid chromatography–mass spectrometry–based method was developed for the rapid screening and identification of ligands from Citrus limon peel, which are suitable acetylcholinesterase inhibitors. Subsequently, the anti‐Alzheimer's activity of these compounds was assessed using a PC12 cell model. Six major compounds, viz. neoeriocitrin, isonaringin, naringin, hesperidin, neohesperidin, and limonin, were identified as potent acetylcholinesterase inhibitors. A continuous and efficient online method, which involved the use of a microwave‐assisted extraction device, solvent concentration tank, and centrifugal partition chromatography column, was developed for the scale‐up of these compounds, and the obtained compounds presented high purity. Next, their bioactivity was evaluated using a PC12 cell model. This novel approach, which was based on ultrafiltration–liquid chromatography–mass spectrometry, microwave‐assisted extraction online coupled with solvent concentration tank, and centrifugal partition chromatography along with in vitro evaluation, could represent a powerful tool for the screening and extraction of acetylcholinesterase inhibitors from complex matrices, and could be a useful platform for the large‐scale production of bioactive and nutraceutical ingredients.  相似文献   

2.
pH‐zone‐refining centrifugal partition chromatography was successively applied in the large‐scale separation of close Rf antipsychotic indole alkaloids directly from CHCl3 fraction of Rauwolfia tetraphylla leaves. Two experiments with increasing mass from 500 mg to 3 g of crude alkaloid extracts ( 1 C) of R. tetraphylla were carried out in normal‐displacement mode using a two‐phase solvent system composed of methyl tert‐butyl ether/ACN/water (4:1:5, v/v/v) where HCl (12 mM) was added to the lower aqueous stationary phase as a retainer and triethylamine (5 mM) to the organic mobile phase as an eluter. The two centrifugal partition chromatography separations afforded a total of 162.6 mg of 10‐methoxytetrahydroalstonine ( 1 ) and 296.5 mg of isoreserpiline ( 2 ) in 97% and 95.5% purity, respectively, along with a 400.9 mg mixture of α‐yohimbine and reserpiline ( 3 and 4 ). Further, this mixture was resolved over medium pressure LC using TLC grade silica gel H (average particle size 10 μm), which afforded 160.4 mg of α‐yohimbine ( 3) and 150.2 mg of reserpiline ( 4) in >95% purities. The purity of the isolated antipsychotic alkaloids was analyzed by high‐performance LC and their structures were characterized on the basis of their 1D, 2D NMR and electrospray ionization‐mass spectroscopic data.  相似文献   

3.
Thonningia sanguinea is a parasitic herb widely used in traditional African medicine. Dihydrochalcone glucosides (unsubstituted, substituted with hexahydroxydiphenoyl or galloyl moieties) are the main constituents in the subaerial parts of this plant. In the present study, purification of the six major compounds from a methanol extract of the plant's subaerial parts was achieved by centrifugal partition chromatography. A first dimension centrifugal partition chromatography separation with the solvent system methyl tert‐butyl ether/1,2‐dimethoxyethane/water (1:2:1) in the ascending mode enabled the isolation of the two major bioactive compounds thonningianin A and B from 350 mg of methanol extract within only 16 min with respectable yields (25.7 and 21.1 mg), purities (87.1 and 85%), and recoveries (71.2 and 70.4%). Using a multiple heart‐cutting strategy, the remaining four major dihydrochalcone glucosides of the extract were further separated in a second dimension centrifugal partition chromatography with the solvent system ethyl acetate/1,2‐dimethoxyethane/water (2:1:1) in the descending mode with high purities (88.9–98.8%).  相似文献   

4.
Countercurrent chromatography (CCC) is a liquid chromatography technique in which the stationary phase is also a liquid. The main chemical process involved in solute separation is partitioning between the two immiscible liquid phases: the mobile phase and the support-free liquid stationary phase. The octanol-water partition coefficients (P(o/w)) is the accepted parameter measuring the hydrophobicity of molecules. It is considered to estimate active principle partitioning over a biomembrane. It was related to the substance biological activity. CCC is able to work with an octanol stationary phase and an aqueous mobile phase. In this configuration, CCC is a useful and easy alternative to measure directly the P(o/w) of the molecules compared to other methods including the classical and tedious shake-flask method. Three ketones are used as model compounds to illustrate the CCC protocol of P(o/w) measurement. The focus of this work is put on ionisable molecules whose apparent P(o/w) is completely changed by ionization. β-Blockers, diuretics and sulfonamides are compound classes that were studied. Some of the experimentally determined P(o/w) coefficients of the molecular forms disagreed with calculated and experimental values available in the literature. The P(o/w) coefficients of the ionic forms and the acidity constants were also calculated using a theoretical model. Relationships between biological properties and hydrophobicity are also discussed.  相似文献   

5.
An efficient combination strategy based on high‐speed shear dispersing emulsifier technique and high‐performance countercurrent chromatography was developed for on‐line extraction and isolation of carotenoids from the fruits of Lycium barbarum. In this work, the high‐speed shear dispersing emulsifier technique has been employed to extract crude extracts using the upper phase of high‐performance countercurrent chromatography solvent system composed of n‐hexane?dichloromethane?acetonitrile (10:4:6.5, v/v) as the extraction solvent. At the separation stage, the high‐performance counter‐current chromatography process adopts elution–extrusion mode and the upper phase of the solvent system as stationary phase (reverse‐phase mode). As a result, three compounds including zeaxanthin, zeaxanthin monopalmitate, and zeaxanthin dipalmitate with purities of 89, 90, and 93% were successfully obtained in one extraction‐separation operation within 120 min. The targeted compounds were analyzed and identified by high‐performance liquid chromatography, mass spectrometry, and NMR spectroscopy. The results indicated that the present on‐line combination method could serve as a simple, rapid, and effective way to achieve weak polar and unstable compounds from natural products.  相似文献   

6.
pH‐Zone‐refining centrifugal‐partition chromatography (CPC) was successfully applied in the separation of complex polar steroidal glycoalkaloids of close Rf values, directly from a crude extract of Solanum xanthocarpum. The experiment was performed with a two phase solvent system composed of ethyl acetate/butanol/water (1:4:5 by volume) where triethylamine (5 mM) was added to the upper organic mobile phase as an eluter and TFA (10 mM) to the aqueous stationary phase as a retainer. Separation of 1 g of crude extract over CPC resulted in two distinct pH‐zones. The fractions collected in pH‐zone i afforded 72 mg of solasonine while the fractions collected in pH‐zone ii were slightly impure, hence were purified over medium pressure LC, which afforded 30 mg of solasonine and further 15 mg of solamargine (SM). The steroidal glycoalkaloids, SM and solasonine were isolated in 93.3 and 91.6% purity, respectively. The isolated alkaloids were characterized on the basis of their 1H, 13C‐NMR, and ESI‐MS data.  相似文献   

7.
The potential of centrifugal partition extraction (CPE) combined with the ion-pair (IP) extraction mode to simultaneously extract and purify natural ionized saponins from licorice is presented in this work. The design of the instrument, a new laboratory-scale Fast Centrifugal Partition Extractor (FCPE300®), has evolved from centrifugal partition chromatography (CPC) columns, but with less cells of larger volume. Some hydrodynamic characteristics of the FCPE300® were highlighted by investigating the retention of the stationary phase under different flow rate conditions and for different biphasic solvent systems. A method based on the ion-pair extraction mode was developed to extract glycyrrhizin (GL), a biologically active ionic saponin naturally present in licorice (Glycyrrhiza glabra L., Fabaceae) roots. The extraction of GL was performed at a flow rate of 20 mL/min in the descending mode by using the biphasic solvent system ethyl acetate/n-butanol/water in the proportions 3/2/5 (v/v/v). Trioctylmethylammonium with chloride as a counter-ion (Al336®) was used as the anion extractant in the organic stationary phase and iodide, with potassium as counter-ion, was used as the displacer in the aqueous mobile phase. From 20 g of a crude extract of licorice roots, 2.2 g of GL were recovered after 70 min, for a total process duration of 90 min. The combination of the centrifugal partition extractor with the ion-pair extraction mode (IP-CPE) offers promising perspectives for industrial applications in the field of natural product isolation or for the fractionation of natural complex mixtures.  相似文献   

8.
Melodamide A, a phenolic amide from the leaves of Melodorum fruticosum Lour., has previously shown pronounced anti‐inflammatory activity. In order to rapidly isolate larger quantities for biological testing, a fast, one‐step isolation method by centrifugal partition chromatography was developed within this study. Fractionation of the dichloromethane extract was performed with a two‐phase solvent system consisting of n‐hexane, ethyl acetate, methanol, and water (3:7:5:5, v/v), leading to the isolation of melodamide A with a purity of >90% and a yield of 6.7 w% within 32 min. The developed method can also be used in dual mode for the enrichment of further constituents like flavonoids or chalcones. In order to support the centrifugal partition chromatography method development, additionally, a high‐performance liquid chromatography method was established and validated to determine quantities of melodamide A in plant material and crude extracts. Analysis of M. fruticosum leaves and a dichloromethane extract obtained from this plant material showed a total melodamide A content of 0.19 ± 0.008 and 8.9 ± 0.249 w%, respectively.  相似文献   

9.
Stroke is one of the most common diseases worldwide. Lactate dehydrogenase inhibitors are widely used in the treatment of ischemic stroke, with natural products considered a promising source of lactate dehydrogenase inhibitors. In this study, ultrafiltration liquid chromatography coupled with mass spectrometry was used for the screening and identification of lactate dehydrogenase inhibitors from Poria cocos . Five lactate dehydrogenase inhibitors were selected: dehydropachymic acid, pachymic acid, dehydrotrametenolic acid, trametenolic acid, and eburicoic acid. The inhibitors were extracted and isolated with purities of 96.75, 98.15, 97.25, 95.46, and 94.88%, respectively, by using a new “hyphenated” strategy of microwave‐assisted extraction coupled with counter‐current chromatography and centrifugal partition chromatography by a two‐phase solvent system of n‐hexane/ethyl acetate/ethanol/water at the volume ratio 0.965:1.000:0.936:0.826 v/v/v/v. The bioactivity of the isolated compounds was assessed using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay in PC12 cells. The results also showed that the hyphenated technique of microwave‐assisted extraction coupled with counter‐current chromatography and centrifugal partition chromatography was an efficient method for the continuous extraction and online isolation of chemical constituents from medicinal herbs. Furthermore, the research route based on the activity screening, extraction, separation, and activity verification of the compounds offered advantages of efficiency, orientation, and objectivity.  相似文献   

10.
In organic synthesis, the purification of reactional intermediates or final products is generally carried out by normal phase flash chromatography. However, for dihydrodipyridopyrazines, a new family of antitumor agents, the efficiency of this technique is too low to achieve the purification of the isomer mixture. Purification of the DHDPP isomer mixture has therefore been studied using preparative liquid chromatography. With the stationary phase used in flash chromatography, PLC provides greater efficiency and allows to increase the mobile phase flow rate. A complete study of preparative purification was performed, including that of compounds solubility and analytical optimization. This work has allowed to lower the overlap between the two DHDPP isomers, to greatly reduce the total duration of the process, to increase the purified quantity per run and consequently to greatly improve the throughput of the purification. In addition, this technique can be easily and totally automated. Concurrently, another purification method (centrifugal partition chromatography ), based on acidic constants difference of the two components in two immiscible liquids, was developed. CPC has demonstrated its ability to separate the two DHDPP isomers. Finally, the economic aspects of PLC and CPC results are compared.  相似文献   

11.
An ultrasound‐assisted, hybrid ionic liquid, dispersive liquid–liquid microextraction method coupled to high‐performance liquid chromatography with a variable‐wavelength detector was developed to detect ten insecticides, including diflubenzuron, triflumuron, hexaflumuron, flufenoxuron, lufenuron, diafenthiuron, transfluthrin, fenpropathrin, γ‐cyhalothrin and deltamethrin, in fruit juices. In this method, an appropriate extraction solvent was chosen based on the partition coefficient of the target compounds. A mixture of 1‐octyl‐2,3‐dimethylimidazolium bis(trifluoromethylsulfonyl)imide and 1‐hexyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used as the extractant. The extraction efficiency was screened using Plackett–Burman design and optimized using central composite design. Under the optimal conditions, good linearity was obtained for all the analytes in the pure water model and the fruit juice samples. In pure water, the recoveries of the ten insecticides ranged from 85.7 to 108.9%, with relative standard deviations for one day ranging from 1.24 to 2.64%. The limits of detection were in the range of 0.19–0.69 μg/L, and the enrichment factors were in the range of 123–160. The logarithm of the n‐octanol/water partition coefficient in this experiment is a useful reference to select a suitable extraction solvent, and the proposed technique was applied for the analysis of ten insecticides in fruit juice with satisfactory results.  相似文献   

12.
Parishins are high‐polarity and major bioactive constituents in Gastrodia elata Blume. In this study, the effect of several inorganic salts on the partition of parishins in two‐phase solvent systems was investigated. Adding ammonium sulfate, which has a higher solubility in water, was found to significantly promote the partition of parishins in the upper organic polar solvents. Based on the results, a two‐phase solvent system composed of butyl alcohol/acetonitrile/near‐saturated ammonium sulfate solution/water (1.5:0.5:1.2:1, v/v/v/v) was used for the purification of parishins by high‐speed counter‐current chromatography. Fractions obtained from high‐speed counter‐current chromatography were subjected to semi‐preparative high‐performance liquid chromatography to remove salt and impurities. As a result, parishin E (6.0 mg), parishin B (7.8 mg), parishin C (3.2 mg), gastrodin (15.3 mg), and parishin A (7.3 mg) were isolated from water extract of Gastrodia elata Blume (400 mg). These results demonstrated that adding inorganic salt that has high solubility in water to the two‐phase solvent system in high‐speed counter‐current chromatography was a suitable approach for the purification of high‐polarity compounds.  相似文献   

13.
14.
By essence, all kinds of chromatographic methods use the partitioning of solutes between a stationary and a mobile phase to separate them. Not surprisingly, separation methods are useful to determine accurately the liquid-liquid distribution constants, commonly called partition coefficient. After briefly recalling the thermodynamics of the partitioning of solutes between two liquid phases, the review lists the different methods of measurement in which chromatography is involved. The shake-flask method is described. The ease of the HPLC method is pointed out with its drawback: the correlation is very sensitive to congeneric effect. Microemulsion electrokinetic capillary electrophoresis has become a fast and reliable method commonly used in industry. Counter-current chromatography (CCC) is a liquid chromatography method that uses a liquid stationary phase. Since the CCC solute retention volumes are only depending on their partition coefficients, it is the method of choice for partition coefficient determination with any liquid system. It is shown that Ko/w, the octanol-water partition coefficients, are obtained by CCC within the -1 < log Ko/w < 4 range, without any correlation or standardization using octanol as the stationary phase. Examples of applications of the knowledge of liquid-liquid partition coefficient in the vast world of solvent extraction and hydrophobicity estimation are presented.  相似文献   

15.
Carnosic acid and carnosol are the main bioactive components responsible for the significant antioxidant activity of Rosmarinus officinalis . Nevertheless, they are known for their instability in solutions. Separation of both compounds from crude rosemary extract was successfully achieved by one‐step centrifugal partition chromatography without any degradation. A two‐phase solvent system, hexane/ethyl acetate/methanol/water (3:2:3:2 v/v) was run on a preparative scale applying the elution–extrusion technique in descending mode. A 900 mg quantity of the crude extract containing 39.7% carnosic acid and 12.3% carnosol was loaded onto a 500 mL column, rotating at 1800 rpm. Carnosic acid and carnosol were obtained at purities of 96.1 ± 1% and 94.4 ± 0.9%, with recoveries of 94.3 ± 4.4% and 94.8 ± 2.3%, respectively. The compounds were identified by mass spectrometry, tandem mass spectrometry, and comparison with authentic standards.  相似文献   

16.
To develop an efficient method for large preparation of javanicin from Fusarium solani, a rapid and simple method by high‐speed countercurrent chromatography was established based on average polarity (P′ values) and partition coefficients (K values) of crude samples. A suitable solvent system for high‐speed countercurrent chromatography was selected from many possible biphasic solvent systems. HSCCC was successfully applied to separate and purify javanicin, the main bioactive component of solid cultures of the fungus F. solani isolated from the fruiting body of Trametes trogii, with petroleum ether–ethyl acetate–methanol–water (4:3:2:1, v/v) as solvent system. A total amount of 40.6 mg of javanicin was obtained from 100 mg crude sample. The purity of javanicin was 92.2% with a recovery of 95.1%, as determined by high‐performance liquid chromatrography. The molecular structure was identified primarily by NMR and MS methods. The results indicated that high‐speed countercurrent chromatography could be a powerful technology for separating naphthoquinones from the solid cultures of the fungus F. solani. It is also of significance that the separation of javanicin from natural source was carried out for the first time utilizing high‐speed countercurrent chromatography.  相似文献   

17.
A novel high performance liquid chromatographic (HPLC) method viz. “enthalpic partition assisted size exclusion chromatography” deliberately combines entropic and enthalpic partition mechanisms. It enables separation of homopolymers according to their molar mass with increased selectivity, as well as discrimination of polymer species differing in their nature/composition. Enthalpic partition of macromolecules takes place between the mobile phase and the stationary “liquid” of a different chemical nature, which is immobilized within pores of an appropriate carrier (a bonded phase). The extent of enthalpic partition depends on the accessibility of bonded phase for macromolecules and on the difference of polymer solubility in the mobile phase and in the solvated bonded phase. The enthalpic partition in favor of column packing arises from better solubility of polymer solutes in the solvated stationary phase compared to the mobile phase. Macromolecules are “pushed” into the solvated stationary phase and their retention volumes (VR) increase. In the area of high molar masses, the extent of enthalpic partition as rule raises with the increasing size of macromolecules. However, under properly chosen experimental conditions the enthalpic partition may rapidly diminish with the sample molar mass (M), likely due to the solubility changes and/or due to partial exclusion of macromolecules from the pores. As result, the corresponding retention volumes sharply drop within a narrow range of M with the increasing size of macromolecules. This results in the log M vs. VR dependences, which resemble in their form that for size exclusion chromatography but are much more flat indicating highly selective separations of homopolymers according to their molar masses. In this way, enthalpic partition “assists” entropic partition (size exclusion). Polymer species, which do not undergo enthalpic partition, elute from the HPLC column in the conventional size exclusion mode and can be discriminated from the partitioning species. Enthalpic partition assisted size exclusion chromatography can be utilized in separation and characterization of various homopolymers, and polymer blends.  相似文献   

18.
In this study, a simple and low‐organic‐solvent‐consuming method combining an acetonitrile‐partitioning extraction procedure followed by “quick, easy, cheap, effective, rugged and safe” cleanup with ionic‐liquid‐based dispersive liquid–liquid microextraction and high‐performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic‐liquid‐based dispersive liquid–liquid microextraction was performed using the ionic liquid 1‐hexyl‐3‐methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid–liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples.  相似文献   

19.
Two new sesterterpenes, 1 and 2 , have been isolated from the lichen Leprocaulon microscopicum. In addition to classic chromatographic methods, a liquid‐liquid chromatography technique, namely centrifugal partition chromatography (CPC) was applied for the purification of compound 2 . The structures were determined by analyses of mass spectrometry and 1D‐ and 2D‐NMR data. The relative configuration of the isolated compounds was assigned on the basis of 2D‐NOESY experiments. The two compounds possess a rare pentacyclic carbon skeleton typical for lichen metabolism, and quite unusual in the vegetal kingdom.  相似文献   

20.
As a liquid‐liquid partition chromatography, counter‐current chromatography has advantages in large sample loading capacity without irreversible adsorption, which has been widely applied in separation and purification fields. The main factors, including partition coefficient, two‐phase solvent systems, apparatus, and operating parameters greatly affect the separation process of counter‐current chromatography. To promote the applications of counter‐current chromatography, it is essential to develop theoretical research to master the principles of counter‐current chromatographic separations so as to achieve predictions before laborious trials. In this article, recent progress about separation prediction methods are reviewed from a point of the steady and unsteady state of the mass transfer process of counter‐current chromatography and its mass transfer characteristics, and then it is divided into three aspects: prediction of partition coefficient, modeling the thermodynamic process of counter‐current chromatography, and modeling the dynamic process of counter‐current chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号