首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reported here is the design of an electrochemical sensor for dopamine (DA) based on a screen print carbon electrode modified with a sulphonated polyether ether ketone-iron (III) oxide composite (SPCE-Fe3O4/SPEEK). L. serica leaf extract was used in the synthesis of iron (III) oxide nanoparticles (Fe3O4NPs). Successful synthesis of Fe3O4NP was confirmed through characterization using Fourier transform infrared (FTIR), ultraviolet–visible light (UV–VIS), X-ray diffractometer (XRD), and scanning electron microscopy (SEM). Cyclic voltammetry (CV) was used to investigate the electrochemical behaviour of Fe3O4/SPEEK in 0.1 M of phosphate buffer solution (PBS) containing 5 mM of potassium ferricyanide (III) solution (K3[Fe(CN)6]). An increase in peak current was observed at the nanocomposite modified electrode SPCE-Fe3O4/SPEEK) but not SPCE and SPCE-Fe3O4, which could be ascribed to the presence of SPEEK. CV and square wave voltammetry (SWV) were employed in the electroxidation of dopamine (0.1 mM DA). The detection limit (LoD) of 7.1 μM and 0.005 μA/μM sensitivity was obtained for DA at the SPCE-Fe3O4/SPEEK electrode with concentrations ranging from 5–50 μM. LOD competes well with other electrodes reported in the literature. The developed sensor demonstrated good practical applicability for DA in a DA injection with good resultant recovery percentages and RSDs values.  相似文献   

2.
Porous carbon (PC) material was prepared from the carbonization of pomegranate peel waste. Subsequently, magnetically separable Fe3O4@PC was synthesized from Fe3O4 nanoparticles decorated on PC by the co‐precipitation method of iron ions. Finally, Fe3O4@PC was successfully decorated with palladium nanoparticles in a simple route by reducing H2PdCl4 in the presence of sodium dodecylsulfate, which was used as both surfactant and reducing agent. Additionally, the effect of temperature on the carbonization process was studied. The Pd/Fe3O4@PC nanocomposite was used as an efficient and heterogeneous catalyst for Suzuki–Miyaura and Sonogashira cross‐coupling reactions in an environmentally friendly medium.  相似文献   

3.
We report a fluorescence approach for the highly selective and sensitive detection of catecholamines using magnetite nanoparticles (Fe3O4 NPs) in the presence of Amplex UltraRed (AUR) and H2O2. Fe3O4 NPs catalyze H2O2-mediated oxidation of AUR. The resulting product fluoresces (excitation/emission maxima, ca. 568/587 nm) more strongly, relative to AUR. When catecholamines bind to Fe3O4, the complexes that are formed induce decreased activity of Fe3O4 NPs, mediated through the coordination between Fe3+ on the NP surface and the catechol moiety of catecholamines. As a result, Fe3O4 NPs-catalyzed H2O2-mediated oxidation of AUR is inhibited by catecholamines. The limits of detection for dopamine (DA), l-DOPA, norepinephrine, and epinephrine were 3 nM, 3 nM, 3 nM, and 6 nM, respectively. The Fe3O4 NPs-H2O2-AUR probe exhibited high selectivity (>1000-fold) toward catecholamines over other tested biomolecules that commonly exist in urine. Four catecholamines had similar sensitivity because the inhibition of the Fe3O4 NPs activity relies on the presence of the catechol moiety. This approach also allowed the determination of tyrosinase activity because tyrosinase catalyzes the conversion of l-tyrosine to l-DOPA. We validated the practicality of the use of the Fe3O4 NPs-H2O2-AUR probe for the determination of the concentrations of DA in urine samples.  相似文献   

4.
This study examines the use of unmodified magnetite nanoparticles (Fe3O4 NPs) for selective extraction and enrichment of the catecholamines dopamine (DA), noradrenaline (NE), and adrenaline (E), prior to analysis using capillary electrophoresis with UV detection. Coordination between Fe3+ on‐the‐surface Fe3O4 NPs and the catechol moiety of catecholamines enables Fe3O4 NPs to capture catecholamines from an aqueous solution. We obtained maximum loading of catecholamines on the NP surface by adjusting the pH of the solution to 7.0. In addition, catecholamine loading on the Fe3O4 NPs increased in conjunction with NP concentrations. H3PO4 was found to be efficient for the removal of adsorbed catecholamines on the NP surface. Adding 1.2% poly(diallyldimethylammonium chloride) to the background electrolyte resulted in a baseline separation of the liberated catecholamines within 20 min. Under optimal extraction and separation conditions, the limit of detections at a S/N ratio of 3 for E, NE, and DA were 9, 8, and 10 nM, respectively. Significantly, the combination of a phenylboronate‐containing spin column and the proposed method was successfully applied to the determination of NE and DA in human urine and NE in Portulaca oleracea L. leaves.  相似文献   

5.
As‐received sepiolite/epoxy systems and Fe3O4‐doped sepiolite/epoxy systems were prepared, and the contents of sepiolite and Fe3O4‐doped sepiolite were kept as 2 and 4 wt%, respectively. Compared with sepiolite, the effect of Fe3O4‐doped sepiolite on the flame retardancy, combustion properties, thermal degradation, thermal degradation kinetics and thermomechanical properties of epoxy resin was investigated systematically by limiting oxygen index (LOI), cone calorimeter (Cone), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Some interesting results had been acquired. The addition of sepiolite decreased heat release rate, total smoke production and smoke production rate, and obviously improved LOI values of epoxy composites. Compared with sepiolite, the addition of Fe3O4‐doped sepiolite further reduced parameters mentioned above of epoxy composites, and further enhanced LOI values and char residues after cone test. There might be a synergistic effect between sepiolite and Fe3O4 on flame retardant epoxy composite. TGA results indicated that the addition of sepiolite had a slight effect on the thermal degradation of epoxy composites; however, the addition of Fe3O4‐doped sepiolite accelerated the thermal degradation of epoxy composites. DMA results showed that the addition of both sepiolite and Fe3O4‐doped sepiolite increased the glass transition temperature (Tg) of epoxy composite. The results obtained in this paper supplied an effective solution for developing excellent flame retardant properties of polymeric materials. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Nafion covered core–shell structured Fe3O4@graphene nanospheres (GNs) modified glassy carbon electrode (GCE) was successfully prepared and used for selective detection dopamine. Firstly, the characterizations of hydro-thermal synthesized Fe3O4@GNs were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Then Fe3O4@GNs/Nafion modified electrode exhibited excellent electrocatalytic activity toward the oxidations of dopamine (DA). The interference test showed that the coexisted ascorbic acid (AA) and uric acid (UA) had no electrochemical interference toward DA. Under the optimum conditions, the broad linear relationship was obtained in the experimental concentration from 0.020 μM to 130.0 μM with the detection limit (S/N = 3) of 0.007 μM. Furthermore, the core–shell structured Fe3O4@GNs/Nafion/GCE was applied to the determination of DA in real samples and satisfactory results were got, which could provide a promising platform to develop excellent biosensor for detecting DA.  相似文献   

7.
Au‐Fe3O4 nanoparticles were widely used as nanoplatforms for biologic applications through readily further functionalization. Dopamine (DA)‐coated superparamagnetic iron oxide (SPIO) nanoparticles (DA@Fe3O4) have been successfully synthesized using a one‐step process by modified coprecipitation method. Then 2–3 nm gold nanoparticles were easily conjugated to DA@Fe3O4 nanoparticles by the electrostatic force between gold nanoparticles and amino groups of dopamine to afford water‐soluble Au‐Fe3O4 hybrid nanoparticles. A detailed investigation by dynamic light scatting (DLS), transmission electron microscopy (TEM), fourier transform infrared (FT‐IR) and X‐ray diffraction (XRD) were performed in order to characterize the physicochemical properties of the hybrid nanoparticles. The hybrid nanoparticles were easily functionalized with a targeted small peptide A54 (AGKGTPSLETTP) and fluorescence probe fluorescein isothiocyanate (FITC) for liver cancer cell BEL‐7402 imaging. This simple approach to prepare hybrid nanoparticles provides a facile nanoplatform for muti‐functional derivations and may be extended to the immobilization of other metals or bimolecular on SPIO surface.  相似文献   

8.
Hybrid materials of Fe3O4‐decorated reduced graphene oxide (Fe3O4‐RGO) and poly(3,4‐ethylenedioxythiophene) (PEDOT) were prepared by poly(ionic liquid)‐mediated hybridization. In this hybrid material, poly(ionic liquid) was found to perform multiple roles for: (1) stabilizing Fe3O4‐RGO against aggregation in the reaction medium, (2) transferring Fe3O4‐RGO nanomaterials from aqueous into organic phase, and (3) associating Fe3O4‐RGO nanomaterials with PEDOT. The hybrid materials of Fe3O4‐RGO with PEDOT showed the lowest surface resistivity of 80 Ω sq?1 at an RGO‐Fe3O4 loading of 1 wt %, and exhibited superparamagnetic behavior with an electromagnetic interference shielding effectiveness of 22 dB. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
This study was designed to investigate the degradation of indigo sodium disulphonate (ISD, a kind of indigoiddyes) in heterogeneous Fenton system (H2O2/Fe3‐xCrxO4). The co‐precipitation was employed to synthesize a series of Cr‐doped magnetite. The result of XRD indicated that Chromium isomorphic replacement will not cause significant changes in the structure of the magnetite. The thermogravimetric (TG) and differential scanning calorimetry analysis was applied in the samples. The adsorption data showed that strong acidic condition and high concentration Cr‐containing magnetite contributed to the enhancement of adsorbing capacity. The degradation experiment was carried out in consideration of 4 aspects, including pH, Fe3‐xCrxO4, H2O2 concentration and catalyst dosage, stating that Cr‐doped magnetite made for degrading indigo sodium disulphonate.  相似文献   

10.
Nanotubular Fe2O3 is a promising photoanode material, and producing morphologies that withstand high‐temperature calcination (HTC) is urgently needed to enhance the photoelectrochemical (PEC) performance. This work describes the design and fabrication of Fe2O3 nanotube arrays that survive HTC for the first time. By introducing a ZrO2 shell on hydrothermal FeOOH nanorods by atomic layer deposition, subsequent high‐temperature solid‐state reaction converts FeOOH‐ZrO2 nanorods to ZrO2‐induced Fe2O3 nanotubes (Zr‐Fe2O3 NTs). The structural evolution of the hematite nanotubes is systematically explored. As a result of the nanostructuring and shortened charge collection distance, the nanotube photoanode shows a greatly improved PEC water oxidation activity, exhibiting a photocurrent density of 1.5 mA cm−2 at 1.23 V (vs. reversible hydrogen electrode, RHE), which is the highest among hematite nanotube photoanodes without co‐catalysts. Furthermore, a Co‐Pi decorated Zr‐Fe2O3 NT photoanode reveals an enhanced onset potential of 0.65 V (vs. RHE) and a photocurrent of 1.87 mA cm−2 (at 1.23 V vs. RHE).  相似文献   

11.
Despite many important applications of α‐Fe2O3 and Fe doped SnO2 in semiconductors, catalysis, sensors, clinical diagnosis and treatments, one fundamental issue that is crucial to these applications remains theoretically equivocal—the reversible carrier‐type transition between n‐ and p‐type conductivities during gas‐sensing operations. Herein, we present an unambiguous and rigorous theoretical analysis in order to explain why and how the oxygen vacancies affect the n‐type semiconductors α‐Fe2O3 and Fe‐doped SnO2, in which they are both electronically and chemically transformed into a p‐type semiconductor. Furthermore, this reversible transition also occurs on the oxide surfaces during gas‐sensing operation due to physisorbed gas molecules (without any chemical reaction). We make use of the ionization energy theory and its renormalized ionic displacement polarizability functional to reclassify, generalize and explain the concept of carrier‐type transition in solids, and during gas‐sensing operation. The origin of such a transition is associated with the change in ionic polarizability and the valence states of cations in the presence of oxygen vacancies and physisorped gas molecules.  相似文献   

12.
《Solid State Sciences》2007,9(6):515-520
Ca2Fe2O5 powder samples, undoped and doped with Na+, Mg2+, Al3+, Ti4+, Ge4+, were prepared with different synthesis routes to investigate the origin of the weak ferromagnetic component reported in literature for calcium ferrite single crystals. XRPD and EPR measurements have shown the presence of Fe3O4 magnetite as impurity phase in all the samples. This ferrimagnetic phase deeply influences the magnetic behavior with features very similar to those reported in literature for Ca2Fe2O5, both powders and single crystals. Our results support the hypothesis that the weak ferromagnetic component observed in Ca2Fe2O5 can be also due to the presence of magnetite impurity traces in the samples.  相似文献   

13.
A fluorescent and colorimetric dual-mode “light-on” assay for the detection of dopamine (DA) was developed based on Fe3+-H2O2-OPD system. In general, Fe3+ could catalyze the H2O2-mediated oxidation of colorless and nonfluorescent o-phenylenediamine (OPD), and the resultant 2,3-diaminophenazine (DAP) exhibits a visible yellow color and yellow fluorescence. However, the reaction rate is extremely slow. By comparison, the introduction of DA can trigger a typical Fenton reaction that generates hydroxyl radical (?OH) continuously, thus increasing the conversion rate of OPD to DAP. Correspondingly, both color and fluorescence of the sensing system are enhanced obviously. On the basis of this fact, a sensor with dual readout for the detection of DA was established via measuring the fluorescent and colorimetric signals of the Fe3+-H2O2-OPD system. The linear ranges were 0.05–20 mM and 0.10–18 mM, and the detection limits were calculated to be 15 and 65 nM (S/N = 3) for fluorescent and colorimetric detection, respectively. The proposed dual-readout method features with simplicity, high sensitivity, visualization and good accuracy. Moreover, the method has been successfully applied to the detection of DA in human urine with satisfactory results.  相似文献   

14.
Nanostructured α‐Fe2O3 with and without fluorine substitution were successfully obtained by a green route, that is, microwave irradiation. The hematite phase materials were evaluated as a high‐performance electrode material in a hybrid supercapacitor configuration along with activated carbon (AC). The presence of fluorine was confirmed through X‐ray photoelectron spectroscopy and transmission electron microscopy. Fluorine‐doped Fe2O3 (F‐Fe2O3) exhibits an enhanced pseudocapacitive performance compared to that of the bare hematite phase. The F‐Fe2O3/AC cell delivered a specific capacitance of 71 F g?1 at a current density of 2.25 A g?1 and retained approximately 90 % of its initial capacitance after 15 000 cycles. Furthermore, the F‐Fe2O3/AC cell showed a very high energy density of about 28 W h kg?1 compared to bare hematite phase (~9 W h kg?1). These data clearly reveal that the electrochemical performance of Fe2O3 can be improved by fluorine doping, thereby dramatically improving the energy density of the system.  相似文献   

15.
A novel Prussian blue (PB)‐Fe3O4 composite has been prepared for the first time by self‐template method using PB as the precursor. According to this method, Fe3O4 nanoparticles distributed uniformly on the surface of PB cube. The feed ratio of sodium acetate to PB has been proved to be a key factor for magnetic properties and electro‐catalysis properties of the composite. Under the experimental conditions, the saturation magnetization value (Ms) of PB‐Fe3O4–2 composite was 22 emug?1, while the Ms value of other samples reduced. The composites also showed a good peroxidase‐like activity for the oxidation of substrate 3,3,5,5‐tetramethylbenzidine (TMB) in the presence of H2O2. The catalytic reduction of hydrogen peroxide capacity was PB‐Fe3O4–1> PB‐Fe3O4–2> PB‐Fe3O4–3> PB‐Fe3O4–0, which confirmed the Fe(II) centres in PB surface and Fe3O4 nanoparticles had synergistic effect on catalytic reduction of hydrogen peroxide.  相似文献   

16.
采用冷冻干燥法分别制备了经Cu、Co、Mn、Ni修饰的Fe2O3/Al2O3氧载体。利用化学吸附仪,通过程序升温还原(H2-TPR)和程序升温氧化(TPO)来研究经不同过渡金属修饰的Fe2O3/Al2O3与H2和O2的反应性能。实验发现,在Fe2O3/Al2O3中加入Cu、Co、Ni以后,氧载体与H2的反应性都有提高,但是当在Fe2O3/Al2O3中加入Mn以后,氧载体的反应性和载氧能力反而下降。经Cu修饰的Fe2O3/Al2O3与H2的反应性最高,且具有很好的反应稳定性,适合用于化学链燃烧。  相似文献   

17.
《中国化学会会志》2018,65(6):687-695
In this work, the PPy/Fe3O4@TiO2 composite was synthesized and characterized by X‐ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and magnetic measurements (using a vibrating sample magnetometer). The adsorption performance of PPy/Fe3O4@TiO2 composite for Cr(VI) ions was evaluated by UV irradiation. The effects of pH, adsorbent dose, contact time, and the initial concentration on the adsorption performance of Cr(VI) onto PPy/Fe3O4@TiO2 were investigated. The maximum adsorption capacity of Cr(VI) upon doped PPy/Fe3O4@TiO2 is 85.30 mg/g at room temperature. The total adsorption process likely follows the Langmuir model and pseudo‐second‐order kinetics. Our study suggests that the PPy/Fe3O4@TiO2 composite can be efficiently used for the adsorption of Cr(VI) ions.  相似文献   

18.
New nanomagnetic coordination compound, Cu(salal)@DA@ Fe3O4, was synthesized by bonding between the Cu(II) complex and Fe3O4 nanoparticles. The Cu complex has two aldehyde groups. The surface of Fe3O4 nanoparticles was modified by the dopamine molecules and the amine group of dopamine is free. Therefore, the Cu complex is covalently anchored to Fe3O4 nanoparticle by the formation of imine bonds between the aldehyde and amine groups. On the other hand, a Cu-Schiff base complex is immobilized on nano-Fe3O4 by dopamine as a bridge. Consequently, the homogeneous Cu complex is easily converted to the heterogeneous-magnetic compound in this project. The Cu complex, Fe3O4 and new nanocomposite were characterized by general techniques such as FTIR, TGA, XRD, FESEM, MAP and EDS. The average crystallite size of Fe3O4 and Cu(salal)@DA@ Fe3O4 were calculated by Scherrer’s formula and they are 18.52 and 24.69 nm, respectively. These results indicated the average crystallite size of Fe3O4 nanomaterials is slightly increased by surface modification by Cu complex. The FESEM images show a tiny spherical mushroom morphology for both nanocompounds, and the EDS analysis confirms the presence of Fe, Cu, C and O in the nanomagnetic coordination composite. The catalytic properties of these compounds were studied and compared to oxidation of benzyl alcohol by 30% H2O2 at room temperature. The results show that the catalytic properties Cu complex and Fe3O4 were enhanced by cooperation of both compounds in a nanocoordination composite.  相似文献   

19.
Novel magnetic titanium dioxide nanoparticles decorated with methyltrimethoxysilane (Fe3O4@TiO2‐MTMOS) were successfully fabricated via a sol–gel method at room temperature. The synthesized material was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis and vibrating sample magnetometry. The removal efficiency of the adsorbent was evaluated through the adsorption of methylene blue (MB) dye from water samples. The adsorption isotherm and kinetics were evaluated using various models. The Langmuir model indicated a high adsorption capacity (11.5 mg g?1) of Fe3O4@TiO2‐MTMOS. The nanocomposite exhibited high removal efficiency (96%) and good regeneration (10 times) compared to Fe3O4 and Fe3O4@TiO2 at pH = 9.0. Based on the adsorption mechanism, electrostatic interaction plays a main role in adsorption since MB dye is cationic in nature at pH = 9, whereas the adsorbent acquired an anionic nature. The newly synthesized Fe3O4@TiO2‐MTMOS can be used as a promising material for efficient removal of MB dye from aqueous media.  相似文献   

20.
Triclosan is broadly utilized as preservative or antiseptic in various cosmetic and personal care products. It becomes hazardous for environmental safety and human health more than a certain concentration. In this research, graphene oxide (GO) nanosheets were prepared by composing Fe3O4@Au nanostructure decorated GO together with polypyrrole (PPy) (Fe3O4@Au‐PPy/GO nanocomposite) in a facile way. The composite excellent increased the electrochemical response, presenting a high sensitive electrochemical method for triclosan detection. The synthesized Fe3O4@Au‐PPy/GO nanocomposite was characterized for its morphological, magnetically and structural properties by FESEM‐mapping, TEM, and XRD. The Fe3O4@Au‐PPy/GO nanocomposites modified glassy carbon electrodes (GCE), Fe3O4@Au‐PPy/GO GCE, showed a higher sensitivity good stability, reproducibility, lower LOD (2.5×10?9 M) and potential practical application in electrochemical detection of triclosan under optimized experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号