首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
One of the simplest thioester molecules, S-methyl thioacetate, CH 3C(O)SCH 3, has been investigated by HeI photoelectron spectroscopy (PES) and valence photoionization studies using synchrotron radiation in the same energy range. In the second series of experiments, total ion yield (TIY), photoelectron photoion coincidence (PEPICO), and partial ion yield (PIY) spectra were recorded. It was found that the photodissociation behavior of CH 3C(O)SCH 3 can be divided into three well-defined energy regions. Vibronic structure was observed in the valence synchrotron photoionization process, being associated with wavenumbers of 912, 671, 1288, 1690, and 1409 cm (-1) for the bands at 12.82, 13.27, 15.66, 15.72, and 17.42 eV, respectively. Evaluation of the PE spectrum in concert with the synchrotron photoionization measurements and complemented by high-level ab initio calculations thus provides unusually detailed insights into the valence ionization processes of this molecule.  相似文献   

2.
Site-specific fragmentations following S 2p and O 1s photoexcitation of thioacetic acid, CH3C(O)SH, have been studied by means of synchrotron radiation. Total ion yield (TIY) spectra were measured and multicoincidence techniques, which include photoelectron-photoion coincidence (PEPICO) and photoelectron-photoion-photoion coincidence (PEPIPICO) time-of-flight mass spectrometry, were applied. The equivalent-core approximation was employed in order to estimate ionization transition values, and the observed peaks were tentatively assigned. A site-specific fragmentation is moderately observed by comparing the mass spectra collected at resonant energies around the inner and shallow inner shell S 2p and O 1s ionization edges. Beside H+ ion, the most abundant ions observed at the S 2p edge excitation were CH3CO+, SH+, S+, and CH3+. At the O 1s region the large CH3CO+ fragment was depressed, and small CHx+ (x = 0, 1, 2, 3), S+, and SH+ fragments were dominant. The dissociation dynamic for the main ion-pair production has been discussed. Two- and three-body dissociation channels have been observed in the PEPIPICO spectra, and the dissociation mechanisms were proposed.  相似文献   

3.
In this work we present a study of the dissociative photoionization of S-methyl thioacetate [CH(3)C(O)SCH(3)] by using multicoincidence time-of-flight mass spectrometry and synchrotron radiation in the S 2p, C 1s, and O 1s edges. Total and partial ion yield spectra together with photoelectron-photoion coincidence (PEPICO) and photoelectron-photoion-photoion coincidence (PEPIPICO) spectra were measured. Fragmentation patterns deduced from PEPICO and PEPIPICO spectra at the various excitation energies show a moderate site-specific fragmentation. The dissociation dynamic for the main ion-pair production is discussed. Two-, three-, and four-body dissociation channels have been observed in the PEPIPICO spectra, and the dissociation mechanisms are proposed. The interstellar HCS(+) and H(3)(+) ions can be observed during the synchrotron experiments reported in the present work.  相似文献   

4.
Total ion yield spectra and photoinduced fragmentations following S 2p, C 1s, O 1s, and F 1s inner shell excitations of methyl thiofluoroformate, FC(O)SCH(3), have been studied in the gaseous phase by using synchrotron radiation and multicoincidence techniques, which include photoelectron-photoion coincidence (PEPICO) and photoelectron-photoion-photoion coincidence (PEPIPICO) time-of-flight mass spectrometry. Fragmentation patterns deduced from PEPICO spectra at the various excitation energies show a moderate site-specific fragmentation. The dissociation dynamic for the main ion-pair production has been discussed. Two-, three-, and four-body dissociation channels have been observed in the PEPIPICO spectra, and the dissociation mechanisms were proposed. The high stability of the interstellar HCS(+) ion can be observed over the whole range of photon energies analyzed.  相似文献   

5.
FTIR spectra have been obtained for matrices formed following electron bombardment of gas mixtures containing varying amounts of vinyl fluoride (VF) in Ar (1:400 to 1:25 600; VF/Ar). The major matrix‐isolated products are a π‐complex of HF/C2H2, fluoroacetylene (HC≡CF) and two isomers of C2H2F?. These products correspond well with the products of photoionization of VF near 15.8 eV. These observations support the dominant mechanism of ionization in the EB‐MI environment as charge transfer of the substrate molecule to Ar?+. Some differences are noted between the observed EB‐MI products and the results from PEPICO studies, primarily in that the EB‐MI products are observed as neutralized forms. The close correlation in EB‐MI and photoionization results allows the EB‐MI technique to be utilized as an ion structural analysis tool in complement to PEPICO studies, and allows the use of PEPICO studies to help predict and elucidate high‐pressure chemistry mechanisms through EB‐MI studies. The differences in the EB‐MI results and ions observed using the PEPICO technique are rationalized in terms of the differences in the experimental techniques. Using VF as the test system, reagent partial pressure conditions that best complement PEPICO studies are determined. Although the major results are observed for all VF partial pressures, dilute samples give rise to further ionization of the primary products, and more concentrated samples give rise to radical—radical reaction chemistry. As a result, a nominal range of 1:3200 (VF/Ar) is demonstrated to provide the best correlation with the gas‐phase PEPICO measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A study of valence electronic properties of S-ethyl chlorothioformate (S-ethyl chloromethanethioate), ClC(O)SCH(2)CH(3), using HeI photoelectron spectra (PES) and synchrotron radiation is presented. Moreover, the photon impact excitation and dissociation dynamics of ClC(O)SCH(2)CH(3) excited at the S 2p and Cl 2p levels are elucidated by analyzing the total ion yield (TIY) spectra and time-of-flight mass spectra acquired in multicoincidence mode [photoelectron-photoion coincidence (PEPICO) and photoelectron-photoion-photoion coincidence (PEPIPICO)]. The HeI photoelectron spectrum is dominated by features associated with lone-pair electrons from the ClC(O)S- group, the HOMO at 9.84 eV being assigned to the n(π)(S) sulfur lone-pair orbital. Whereas the formation of C(2)H(5)(+) ion dominates the fragmentation in the valence energy region, the most abundant ion formed in both the S and Cl 2p energy ranges is C(2)H(3)(+). Comparison with related XC(O)SR (X = H, F, Cl and R = -CH(3), -C(2)H(5)) species reveals the impact of the alkyl chain on the photodissociation behavior of S-alkyl (halo)thioformates.  相似文献   

7.
Small penta-atomic molecules like FC(O)SCl and ClC(O)SCl have been analyzed by using both photoelectron spectroscopy (PES) and results derived from the use of synchrotron radiation in the same energy range. For this second experiment total ion yield (TIY), photoelectron photoion coincidence (PEPICO), and partial ion yield (PIY) spectra have been recorded. This set of data together with results obtained by computational chemistry allow us to study electronic properties and the ionization channels of both species. Thus, whereas the photodissociation behavior of FC(O)SCl can be divided into three well-defined energy regions, the fragmentation dynamics of ClC(O)SCl seems to be more complex. Nevertheless, simultaneous evaluation of the PES and valence synchrotron photoionization studies helps to clarify the molecular ionization processes.  相似文献   

8.
Total and partial ion yield spectra of chlorocarbonylsulfenyl chloride, ClC(O)SCl, are studied using tunable synchrotron radiation. Multicoincidence techniques, which include photoelectron-photoion coincidence (PEPICO) and photoelectron-photoion-photoion coincidence (PEPIPICO) time-of-flight mass spectrometry, were applied to study the fragmentation dynamics around the S 2p, Cl 2p, C 1s, and O 1s ionization edges. The search for site-specific fragmentation effects showed a definite enhancement of the Cl+ signal at the Cl 2p resonance. However, fragmentation patterns of the PEPICO spectra at the various excitation energies are essentially identical. Evidence for the occurrence of the previously reported charge separation after an ion rearrangement dissociation mechanism was found. Highly charged species were observed in the multicoincidence spectra at K shell transitions, revealing the formation of a highly charged molecular ion.  相似文献   

9.
Photodissociation experiments have been performed for the parabanic acid (C3H2N2O3) molecule in vapor phase using time-of-flight mass spectrometry and synchrotron radiation in the VUV photon energy range. Electron ion coincidence (PEPICO) spectra and partial ion yields have been recorded as a function of the photon energy covering the 11–21 eV valence range region. The resulting photoionization products as well as proposed fragmentation pathways leading to those species are presented and discussed. Electronic structure computations for the neutral and ionic species were also carried out at the B3LYP/aug-cc-pVTZ level of theory.  相似文献   

10.
A combination of photoelectron spectroscopy and synchrotron based photoelectron photoion coincidence (PEPICO) spectra has been applied to investigate the electronic structure and the dissociative ionization of the CH(2)ClSCN molecule in the valence region. The PES is assigned with the electronic structure calculations at the outer-valence Green's function and symmetry adapted cluster/configuration interaction (SAC-CI) levels offer an explanation of our experimental results. Upon vacuum ultraviolet irradiation the low-lying radical cation, located at 10.39 eV is formed. The molecular ion is observed in the time-of-flight mass spectra, together with the CH(2)SCN(+) and CH(2)Cl(+) daughter ions. The total ion yield spectra have been measured in the S 2p and Cl 2p regions and several channels have been determined in dissociative photoionization events for the core-excited species. Thus, by using time-of-flight mass spectrometry and synchrotron radiation the relative abundances of the ionic fragments and their kinetic energy release values were obtained from both PEPICO and photoelectron photoion photoion coincidence spectra. Possible fragmentation processes are discussed and compared with that found for the related CH(3)SCN species.  相似文献   

11.
Photoelectron photoion coincidence measurements have been performed for the thiazole (C3H3NS) molecule in gas phase, using time‐of‐flight mass spectrometry in the electron‐ion coincidence mode and vacuum ultraviolet synchrotron radiation. photoelectron photoion coincidence spectra have been recorded as a function of the photon energy covering the valence range from 10 to 21 eV. The resulting photoionization products as well as the dissociation pathways leading to the ionic species were proposed and discussed. We have also performed density functional theory and ab initio calculations for the neutral molecule, its cation and the ion fragments produced in order to determine their electronic and structural parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
We have studied the dissociation of the trifluoromethane molecule, CHF3, into negative ionic fragments at the C 1s and F 1s edges. The measurements were performed by detecting coincidences between negative and positive ions. We observed five different negative ions: F?, H?, C?, CF?, and F2?. Their production was confirmed by the analysis of triple coincidence events (negative‐ion/positive‐ion/positive‐ion or NIPIPI coincidences) that were recorded with cleaner signals than those of the negative‐ion/positive‐ion coincidences. The intensities of the most intense NIPIPI coincidence channels were recorded as a function of photon energy across the C 1s and F 1s excitations and ionization thresholds. We also observed dissociation channels involving the formation of one negative ion and three positive ions. Our results demonstrate that negative‐ion/positive‐ion coincidence spectroscopy is a very sensitive method to observe anions, which at inner‐shell edges are up to three orders of magnitude less probable dissociation products than cations.  相似文献   

13.
The dissociation rates and energetics of the loss of halogen atoms from energy-selected halotoluene ions were investigated by photoelectron photoion coincidence (PEPICO) and collisional activation (CA) mass spectrometric experiments. Dissociation onsets, determined from the dissociation rates measured as a function of the internal energy of the parent ion, revealed the formation of three [C7H7]+ isomers, which were identified, on the basis of the CA data, as the tolyl, benzyl and tropylium ions. All of the ions investigated produced a mixture of isomeric ions. Only iodotoluene ions produced any tolyl product ions by a direct bond cleavage. The bromo- and chlorotoiuene ions produced mixtures of benzyl and tropyl ions. The observed two-component decay rates of the iodotoluene ions revealed the participation of a lower energy [C7H7I]+ ˙ isomer in the dissociation process. The identity of this isomer is not known but it probably does not have the cycloheptatriene ion structure because considerable kinetic energy was released in this dissociation.  相似文献   

14.
A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (12A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 12A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH3, NH2, NH3, CO, HCCO and NH2CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed.  相似文献   

15.
Total ion yield spectra and photoinduced fragmentations following S 2p, Cl 2p, and O 1s inner shell excitations of methoxycarbonylsulfenyl chloride, CH(3)OC(O)SCl, have been studied in the gaseous phase by using synchrotron radiation and multicoincidence techniques, which include photoelectron-photoion coincidence (PEPICO) and photoelectron-photoion-photoion coincidence (PEPIPICO) time-of-flight (TOF) mass spectrometry. According to the analysis of the partial ion yield spectra the S+ ion signal shows a steep enhancement near the S 2p resonance, which could represent an evidence of state-specific fragmentations promoted by electronic excitations from the S 2p to vacant orbitals with strong antibonding character mainly located at the sulfur atom. The dissociation dynamics for selected PEPIPICO islands have been discussed. Fragmentation channels that involve the extrusion of H+ and CH(x)+ (x = 0, 1, 2, 3) fragments have been predominantly observed for dissociation of doubly charged CH(3)OC(O)SCl(2+).  相似文献   

16.
Gaseous 2,2,2‐trifluoroethanol (TFE) is excited with synchrotron radiation between 10 and 1000 eV and the ejected electrons and positive ions are detected in coincidence. In the valence‐electron energy region, the most abundant species is CH2OH+. Other fragments, including ions produced by atomic rearrangements, are also detected; the most abundant are COH+, CFH2+ and CF2H2+. The energies of electronic transitions from C 1 s, O 1 s and F 1 s orbitals to vacant molecular orbitals are determined. A site‐specific C 1 s excitation is observed. The photofragmentation mechanisms after the excitation of core‐shell electrons are inferred from analysis of the shape and slope of the coincidence between two charged fragments in the bi‐dimensional coincidence spectra. The spectra are dominated by islands that correspond to the coincidence of H+ with several charged fragments. One of the most important channels leads to the formation of CH2OH+ and CF3+ in a concerted mechanism.  相似文献   

17.
An alkynyl‐protected gold nanocluster, Au22(tBuC≡C)18 ( 1 ), has been synthesized and its structure has been determined by single‐crystal X‐ray diffraction. The molecular structure consists of a Au13 cuboctahedron kernel and three [Au3(tBuC≡C)4] trimeric staples. The cluster 1 has strong luminescence in the solid state with a 15 % quantum yield, and it displays interesting thermochromic luminescence as revealed by temperature‐dependent emission spectra. The enhanced room‐temperature emission is characterized as thermally activated delayed fluorescence.  相似文献   

18.
Upon activation in the gas phase, protonated benzoic acid (m/z 123) undergoes fragmentation by several mechanisms. In addition to the predictable water loss followed by a CO loss, the m/z 123 ion more intriguingly eliminates a molecule of benzene to generate protonated carbon dioxide (H ‐ O+ ═ C ≡ O , m/z 45), or a molecule of carbon dioxide to yield protonated benzene (m/z 79). Experimental evidence shows that the incipient proton ambulates during the fragmentation processes. For the CO2 or benzene loss, protonated benzoic acid transfers the charge‐imparting proton initially to the ortho position and then to the ipso position to generate a transient species which dissociates to form an ion‐neutral complex between benzene and protonated CO2. The formation of the m/z 45 ion is not a phenomenon unique to benzoic acid: spectra from protonated isophthalic acid, terephthalic acid, trans‐cinnamic acid and some aliphatic acids also displayed a peak for m/z 45. However, the m/z 45 peak is structurally diagnostic only for certain benzene polycarboxylic acids because the spectra of compounds with two carboxyl groups on adjacent ring carbons do not produce a peak at m/z 45. For the m/z 79 ion to be formed, an intramolecular reaction should take place in which protonated CO2 within the ion‐neutral complex acts as the attacking electrophile to transfer a proton to benzene. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
The dissociative photoionization of the chloroform and chloroform-d molecules has been studied in the valence region and around the chlorine 2p edge. Time-of-flight mass spectrometry in the coincidence mode-namely, photoelectron-photoion coincidence (PEPICO)-was employed. He I lamp and tunable synchrotron radiation were used as light sources. Total and partial ion yields have been recorded as a function of the photon energy. Singly, doubly, and triply ionized species have been observed below (195 eV), on (201 eV), and above (230 eV) the Cl 2p resonances. A definite degree of site-selective fragmentation was observed at the Cl 2p resonance as the relative contributions of several ionic species were seen to go through a maximum at 201 eV. At the same time all stable doubly charged ions were also observed at 198 eV (below the 2p resonances), resulting from direct ionization processes. Isotopic substitution is shown to provide a very efficient means of improving the mass resolution and assignment of unresolved peaks in spectra of CHCl(3), particularly for those fragments differing by a hydrogen atom. It is suggested that ultrafast fragmentation of the system following 2p excitation to a strongly antibonding state contributes to the large amount of Cl(+) observed in the PEPICO spectrum measured at 201 eV. Kinetic energy distributions were determined for the H(+), D(+), and Cl(+) fragments.  相似文献   

20.
The hypothesis that the degree of hydration of poly(oxyethylene) (POE) in aqueous solution depends on the mole ratio of water molecules to ether oxygen atoms in the molecule has been verified by studying the isotropic Raman spectra in the O−H stretching region for four short-chain POEs (C 1E n C 1 withn=1−4). Excellent coincidence of the O−H stretching Raman band for all four POEs studied in the range of mole ratio H2O/O ether from 25 to 0.6 was observed, thus confirming the assumption stated above. A conclusion that all ether oxygen atoms in the POE molecule participate in hydrogen bonding with water molecules has been made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号