首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a biosensor for highly sensitive and selective determination of the endocrinic disruptor bisphenol A (BPA). It is based on glassy carbon electrode modified with calf thymus DNA and a composited prepared from single walled carbon nanotubes (SWNT) and Nafion. The interaction between BPA and DNA was studied by voltammetry. The binding constant was determined to be 3.55?×?103 M?1, and the binding site has a length of 4.3 base pairs. These electrochemical studies provide further information for a better understanding of the toxicity and carcinogenicity of BPA. Under optimal conditions, the biosensor displays a linear electrochemical response to BPA in the 10 nM to 20 μM concentration range, with a detection limit as low as 5.0 nM (at an S/N of 3). The method was successfully applied to the quantification of BPA in leachates from plastic baby bottles. Recoveries range from 94.0 % to 106.0 % which underpins the excellent performance of this SWNT-based DNA sensor.
Figure
A biosensor based on DNA and single walled carbon nanotubes modified glassy carbon electrode displays a linear electrochemical response to bisphenol A in the 10 nM to 20 μM concentration range, with a detection limit as low as 5.0 nM (at an S/N of 3).  相似文献   

2.
We report on a simple and highly sensitive amperometric method for the determination of bisphenol A (BPA) using pencil graphite electrodes modified with polyaniline nanorods and multiwalled carbon nanotubes. The modified electrodes display enhanced electroactivity for the oxidation of BPA compared to the unmodified pencil graphite electrode. Under optimized conditions, the sensor has a linear response to BPA in the 1.0 and 400?μM concentration range, with a limit of detection of 10?nM (at S/N?=?3). The modified electrode also has a remarkably stable response, and up to 95 injections are possible with a relative standard deviation of 4.2% at 100?μM of BPA. Recoveries range from 86 to 102% for boiling water spiked with BPA from four brands of baby bottles.
Figure
Polyaniline nanorods/MWCNTs modified pencil graphite electrode was fabricated for sensitive detection of bisphenol A. Experimental results indicated that it was a feasible alternative sensor to existing methods.  相似文献   

3.
Presently, bisphenol A (BPA) has been added to the list of substances of very high concern as endocrine disruptors. According to the literature, exposure to bisphenol A even at low doses may result in adverse health effects. In this study, electrochemical sensor of Bisphenol A based on thioether DDT‐Poly(N‐vinylpyrrolidone) oligomer has been developed. The thioether oligomer, which is capable of recognizing BPA, was prepared and used for gold electrode modification. The characterization of the modified gold electrode and the synthesized thioether oligomer were carried out by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), Fourier‐transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR) and Size exclusion chromatography (SEC). Obtained results indicate that the modified electrode shows good electrochemical activity, good sensitivity and reproducibility for BPA detection. It exhibited a good linear relationship ranging from 1 to 20 pg/mL, and the detection limit was found to be 1.9 pg/mL at S/N=3. Several interfering species such as hydroquinone, phenol and resorcinol were used and their behaviors on the modified gold electrode were investigated.  相似文献   

4.
A highly sensitive and mercury-free method for determination of bisphenol A (BPA) was established using a glassy carbon electrode that was modified with carboxylated multi-walled carbon nanotubes. A sensitive oxidation peak is found at 550?mV in linear sweep voltammograms at pH?7. Based on this finding, trace levels of bisphenol A can be determined over a concentration range that is linear from 10?nM to 104?nM, the correlation coefficient being 0.9983, and the detection limit (S/N?=?3) being 5.0?nM. The method was successfully applied to the determination of BPA in food package.
Figure
A new electrochemical method was developed for the determination of bisphenol A based on carboxylated multi-walled carbon nanotubes modified electrode.  相似文献   

5.
A sensitive electrochemical method was developed for the determination of bisphenol A (BPA) at a glassy carbon electrode (GCE) modified with a multiwalled carbon nanotubes (MWCNTs)‐gold nanoparticles (GNPs) hybrid film, which was prepared based on the electrostatic interaction between positively charged cetyltrimethylammonium bromide (CTAB) and negatively charged MWCNTs and GNPs. The MWCNT‐GNPs/GCE exhibited an enhanced electroactivity for BPA oxidation versus unmodified GCE and MWCNTs/GCE. The experimental parameters, including the amounts of modified MWCNTs and GNPs, the pH of the supporting electrolyte, scan rate and accumulation time, were examined and optimized. Under the optimal conditions, the differential pulse voltammetric anodic peak current of BPA was linear with the BPA concentration from 2.0×10?8 to 2×10?5 mol L?1, with a limit of detection of 7.5 nmol L?1. The proposed procedure was applied to determine BPA leached from real plastic samples with satisfactory results.  相似文献   

6.
《Analytical letters》2012,45(5-6):436-448
This work reports the determination of bisphenol A (BPA) released from baby feeding bottles by adsorptive stripping voltammetry on a diphenylether carbon paste electrode (DPE-CPE). BPA was as accumulated on the surface of the DPE-CPE by an adsorptive/extractive mechanism at ?0.20 V in B-R buffer at pH 7.0. Following pre-concentration, an anodic scan was applied in the range ?0.20 V to +1.00 V during which BPA was oxidized and the oxidation peak current was related to the BPA concentration in the sample. The parameters related to both the preconcentration and stripping step were investigated. Using the selected conditions, the limit of detection for BPA was 7.8 × 10?9 mol L?1 at a preconcentration time of 240 s and the % relative standard deviation was 4.2% for 6.7 × 10?7 mol L?1 of BPA (n = 8). The proposed method was applied to the determination of BPA leaching from polycarbonate baby feeding bottles under simulated conditions of typical use. The results compared well with those obtained with liquid chromatography-tandem mass spectrometry (LC-MS/MS).  相似文献   

7.
A glassy carbon electrode was modified with a composite made from gold nanoparticles and silk fibroin whose surface was further modified with amino-terminated G4 poly(amidoamine) dendrimer. This electrode shows distinct electrochemical response to bisphenol A (BPA). Electrochemical impedance spectroscopy was used to characterize the surface. The electrode displayed improved adsorption capacity and an increased response to BPA, compared to a surface without modification. Under the optimal detection conditions, the respeonse is linear in the concentration range from 1 nM to 1.3 μM, the correlation coefficient is 0.9991, and the detection limit is 0.5 nM (at an S/N of 3). The method was applied to the determination of BPA in water samples, and the recovery was in the range from 97% to 105%.  相似文献   

8.
Electrochemical behavior of bisphenol A (BPA) at glassy carbon electrode-modified with layered double hydroxide (LDH) and anionic surfactant (sodium dodecyl sulfate) is investigated by electrochemical techniques. Compared with the bare electrode and LDH-modified electrode, the oxidation peak potential of BPA shifted negatively and the peak current increased significantly due to the enhanced accumulation of BPA via electrostatic interaction with LDH at the hydrophobic electrode surface. Some determination conditions such as LDH loading, pH, scan rate, accumulation potential, and accumulation time on the oxidation of BPA were optimized. And some kinetic parameters were investigated. Under the optimized conditions, the oxidation current was proportional to BPA concentration in the range of 8 × 10−9 to 2.808 × 10−6 M with the detection limit of 2.0 × 10−9 M by amperometry. The fabricated electrode showed good reproducibility, stability, and anti-interference. The proposed method was successfully applied to determine BPA in water samples, and the results were satisfactory.  相似文献   

9.
A sensitive and simple electrochemical sensor based on nanoporous gold (NPG) was developed for the detection of bisphenol A (BPA). NPG was prepared by the dealloying method. The NPG modified glassy carbon electrode (GCE) displayed excellent catalytic activity towards the electrooxidation of BPA. The mechanism of the electrooxidation of BPA on NPG/GCE sensor was inferred. The sensor showed a linear range from 0.1 μM to 50 μM with a detection limit of 12.1 nM BPA. Specially, a simple but effective approach was attempted to renew the used sensor. The application of the sensor for real sample analysis was demonstrated.  相似文献   

10.
Ali Özcan 《Electroanalysis》2014,26(7):1631-1639
In this study, pencil graphite electrodes were activated electrochemically in the presence of different supporting electrolytes and used for the selective and sensitive determination of bisphenol A (BPA) in water samples. Synergistic effects of both LiClO4 and NaOH supporting electrolytes on the performance of the electrochemically treated pencil graphite electrode (ETPGE) were demonstrated in the oxidation of BPA. The electrochemical behavior of BPA on the ETPGE showed two irreversible oxidation peaks at 0.744 V and 0.877 V (vs. SCE). The detection limit was determined to be 3.1 nM. This single‐use electrode is a very promising candidate to overcome the passivation problems arising from the oxidation of BPA. The analytical application of the ETPGE was performed in tap and river water samples.  相似文献   

11.
In this study, a 3Au? 1Pd alloy nanoparticles/graphene composite (3Au? 1Pd alloy NPs/GN) with carboxyl groups and hydroxyl groups was prepared facilely by co‐reduction of graphene oxide (GO), HAuCl4, K2PdCl4, with an Au? Pd alloy molar ratio of 3 : 1. The composite modified glass carbon electrode (GCE) showed a good performance for detecting bisphenol A (BPA) due to the enhanced electron transfer kinetics and large active surface area. The effective enrichment of BPA is attributed to the carboxyl groups and hydroxyl groups on the composite. According to the results of differential pulse voltammetry (DPV), the BPA oxidation current is linear to its concentration in the range of 10 nM–5.0 µM (R=0.998), and the detection limit is found to be 4.0 nM (S/N=3).  相似文献   

12.
The ionic liquid 1-butyl -3-[3-(N-pyrrole)-propyl]imidazolium tetrafluoroborate was employed to fabricate a glassy carbon electrode (GCE) modified with a porous film of a polymerized ionic liquid. The resulting film electrode was treated with sodium dodecyl sulfonate solution to exchange the terafluoroborate anions by dodecyl sulfonate groups. This was confirmed by X-ray photoelectron spectroscopy. The morphology of the modified GCE was characterized by scanning electron microscopy and revealed a nanoporous surface. The electrochemical properties of this film electrode were studied by electrochemical impedance spectroscopy using the hexacyanoferrate(II/III) system as an electroactive probe. The response to bisphenol A was investigated by voltammetry. Compared to the unmodified GCE, the oxidation potential is positively shifted, and the oxidation peak current is strongly increased. Experimental conditions were optimized and resulted in an oxidation peak current that is linearly related to concentration of bisphenol A in the 10 nM to ~ 10 μM range. The detection limit is 8.0 nM (at S/N?=?3). The electrode was successfully applied to the determination of bisphenol A in leachates of plastic drinking bottles, and its accuracy was verified by independent assays via HPLC.
Figure
A poly{1 -butyl -3 -[3 -(N -pyrrole)propyl] imidazolium dodecyl sulfonate ionic liquid} nanoprous film electrode was fabricated with potential step technique and anionic exchange. The obtained polymerized ionic liquid film electrode was demonstrated possessing enhanced effects for bisphenol A determination.  相似文献   

13.
We present an electrochemical aptasensor for rapid and ultrasensitive determination of the additive bisphenol A (BPA) and for screening drinking water for the presence of BPA. A specific aptamer against BPA and its complementary DNA probe were immobilized on the surface of a gold electrode via self-assembly and hybridization, respectively. The detection of BPA is mainly based on the competitive recognition of BPA by the immobilized aptamer on the surface of the electrode. The electrochemical aptasensor enables BPA to be detected in drinking water with a limit of detection as low as 0.284 pg?mL?1 in less than 30 min. This extraordinary sensitivity makes the method a most powerful tool for on-site monitoring of water quality and food safety.
Figure
A novel electrochemical aptasensor was developed for rapid and ultrasensitive detection of bisphenol A (BPA) and screening of BPA in drinking water using the specific aptamer against BPA.  相似文献   

14.
A sensitive and reliable electrochemical method was developed for determination of bisphenol A (BPA) in plastic products using an acetylene black paste electrode coated with salicylaldehyde-modified chitosan (denoted as S-CHIT/ABPE). In the second-order derivative linear sweep voltammetry technique, BPA yielded a very sensitive and well-defined oxidation peak at 842?mV in 0.2?mol?L?1 HCl solution. Owing to its unique structure and extraordinary properties, S-CHIT/ABPE showed higher accumulation efficiency toward BPA compared with bare ABPE, and significantly enhanced the oxidation peak current of BPA. Under the optimum conditions, the oxidation peak current was proportional to the concentration of BPA over the range of 4.0?×?10?8?mol?L?1?~?1.0?× 10?5?mol?L?1. The detection limit (S/N?=?3) was 2.0?×?10?8?mol?L?1. The fabricated S-CHIT/ABPE not only exhibited strong adsorption capacity toward BPA, but also provided remarkable stable and quantitatively reproducible analytical performance. Additionally, this newly-developed method possesses some obvious advantages including high sensitivity, extreme simplicity, rapid response and low cost.  相似文献   

15.
A nanocomposite platform of silver nanoparticles and carbon nanofibres (AgCNFs) was used to immobilise a bisphenol A specific 63-mer ssDNA aptamer to form a biosensor. The fabrication process of the biosensor was studied with electrochemical impedance spectroscopy and cyclic voltammetry in the presence of [Fe(CN)6]3−/4− as redox probe. The biosensor detected bisphenol A in a linear range of 0.1–10 nM, with a limit of detection of 0.39 nM using square wave voltammetry (SWV). The biosensor exhibited good selectivity in the presence of interfering species at 100-fold concentrations and was used to detect BPA in real water sample.  相似文献   

16.
构建了不同百分含量的氮掺杂的多壁碳纳米管化学修饰石墨电极,利用线性扫描伏安法及循环伏安法研究了双酚A(BPA)在修饰电极上的电化学行为。提出了一种灵敏、简便的直接检测双酚A的电化学分析方法。在pH6.98的PBS缓冲溶液中,在电位0.20 V富集后,该修饰电极在0.680 V出现一个灵敏的、峰形好的氧化峰。表明氮掺杂多壁碳纳米管薄膜对双酚A的氧化表现出一定的催化作用,能显著提高双酚A的氧化峰电流。在优化条件下,采用线性扫描伏安法对双酚A进行测定。双酚A的氧化峰电流与其浓度在2.5×10-7~1.0×10-4 mol/L之间有很好的线性关系(R为0.996),检出限为5.0×10-8mol/L。电极已初步用于实际样品中BPA的测定。  相似文献   

17.
We have prepared a nanocomposite consisting of single-walled carbon nanotubes and polylysine. It was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and by UV/vis and FTIR spectroscopy. Tyrosinase was covalently immobilized on the nanocomposite, and the resulting bioconjugate deposited on a glassy carbon electrode to form a biosensor for bisphenol A. The biosensor was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Under optimized experimental conditions, the biosensor gives a linear response to bisphenol A in the 4.00 nM to 11.5 μM concentration range. Its sensitivity is 788 mA M?1 cm?2, and the lower detection limit is 0.97 nM (at an S/N of 3). The biosensor shows good repeatability, reproducibility and long-term stability. In a preliminary practical application, it was successfully applied to the determination of bisphenol A in leachates of plastic spoons.
Figure
Single-walled carbon nanotubes-polylysine (SWCNT-PLL) nanocomposite was prepared and thoroughly characterized. The obtained nanocomposite was used as a platform to immobilize tyrosinase (Tyr) onto a glassy carbon electrode (GCE) to fabricate a biosensor for bisphenol A (BPA)  相似文献   

18.
《Electroanalysis》2018,30(3):445-452
A simple and attentive method was attempted for the determination of endocrine disruptor molecule, Bisphenol A (BPA) using residual metal impurity act as a reactant present in as received SWCNT. The electrochemical behavior of BPA oxidation and its reaction mechanism was investigated by cyclic voltammetry using “as received SWCNT modified on glassy carbon electrode” (SWCNT/GCE) and the obtained results were compared with bare GCE. The SWCNT/GCE showed high electrocatalytic activity, sensitivity, stability and more importantly not much surface fouling compared with bare GCE. This is because of the formation of electroactive quinone and catechol as byproducts on SWCNT/GCE during electro‐oxidation of BPA. More interestingly, the electrochemically acid treated SWCNT/GCE not showed any characteristic oxidation and reduction peaks during electro‐oxidation of BPA which indicates that the presence of a residual metal impurity in SWCNT plays a vital role in electro‐oxidation of BPA. The amperometric detection of BPA oxidation on SWCNT/GCE showed excellent stability and good linear response from the wide range of concentration of 10–100 μM. The limit of detection and sensitivity of BPA electro‐oxidation on SWCNT/GCE is to be 7.3 μM (S/N=3) and 0.6494 μA/μM cm2 respectively. Finally, the fabricated sensor using SWCNT/GCE was successfully applied for the detection of BPA in plastic water bottles with excellent recovery range from 98–102 %.  相似文献   

19.
In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5 × 10−3–3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号