首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
In this work, we present a simple homemade batch‐injection analysis cell for screen‐printed electrodes (BIA‐SPE). The potential of the proposed system for on‐site analysis was demonstrated by the determination of carbendazim, catechol, and hydroquinone in tap water. The system provided reduced injection volume (30 µL), high analytical frequency (≈200 h?1) and low detection limits (nanomolar level). Moreover, the BIA‐SPE cell presented better stability (RSD≈0.4 %) than a conventional flow injection cell for SPE (RSD≈5.0 %) in organic media. The proposed homemade BIA‐SPE cell is very simple, inexpensive and can be easily constructed in any laboratory.  相似文献   

2.
Yulong Gao  Tao Wang  Fengyu Liu 《中国化学》2016,34(12):1297-1303
The electrochemiluminescence (ECL) of the Ru(phen)32+/thymine (T) system at bare and graphene oxide (GO)‐modified glassy carbon (GC) electrodes was utilized to determine Hg2+ in tap water. The ECL intensity of Ru(phen)32+ was considerably enhanced by the addition of thymine because of the occurrence of ECL reaction between them. Subsequently, the ECL intensity of Ru(phen)32+/T system rapidly decreased with the addition of Hg2+ because of the formation of a T‐Hg2+‐T complex. A linear response (R2=0.9914) was obtained over a Hg2+ concentration range of 1.0×10?9 mol/L to 1.0×10?5 mol/L with a detection limit of 3.4×10?10 mol/L at a bare GC electrode in 0.1 mol/L phosphate buffer (pH=8.0). The detection limit can be further reduced to 4.2×10?12 mol/L after modification of the GC electrode by GO. To verify its applicability, the proposed method was utilized to determine Hg2+ in tap water and simulated wastewater. The method exhibited good reproducibility and stability and thus reveals the possibility of developing a novel ECL detection method for Hg2+.  相似文献   

3.
Poly(3‐hexylthiophene) (P3HT) has been widely used in devices owing to its excellent properties and structural features. However, devices based on pure P3HT have not exhibited high performance. Strategies, such as thermal annealing and surface doping, have been used to improve the electrical properties of P3HT. In this work, different from previous studies, the effect of thermal annealing on P3HT nanofibers are examined, ranging from the single polymer chain conformation to chain packing, and the interfacial interactions with graphene oxide (GO) at nanoscale dimensions, by using scanning tunneling microscopy (STM), atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). High‐resolution STM images directly show the conformational changes of single polymer chains after thermal annealing. The morphology of P3HT nanofibers and the surface potential changes of the P3HT nanofibers and GO is further investigated by AFM and KPFM at the nanoscale, which demonstrate that the surface potentials of P3HT decrease, whereas that of GO increases after thermal annealing. All of the results demonstrate the stronger interfacial interactions between P3HT and GO occur after thermal treatments due to the changes in P3HT chain conformation and packing order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号