首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1H‐pyrazole‐3‐carboxylic acid 2 , obtained from the furan‐2,3‐dione 1 and N‐Benzylidene‐N'‐(3‐nitrophenyl) hydrazine, was converted via reactions of its acid chloride 3 with various alcohols or N‐nucleo‐philes into the corresponding ester or amide derivatives 4 or 5 , respectively. Nitrile 6 and anilino‐pyrazole acid 7 derivatives of 2 were also obtained by dehydration of 5a in a mixture of SOCl2 with DMF and reduction of 2 with sodium polysulphide, respectively. While cyclocondensation reactions of 2 or 7 with phenyl hydrazine or hydrazine hydrate and 6 with only anhydrous hydrazine lead to derivatives of pyrazolo[3,4‐d]‐pyridazinone 8 and pyrazolo[3,4‐d]pyridazine amine 9 , respectivel. The reaction of 2 with 2‐hydrazinopyri‐dine provided hydrazono‐pyrazole acid derivative 10 , which was decarboxylated to give hydrazono‐pyra‐zole derivative 11 . Pyrazolo[4,3‐d]oxazinone 12 and 2‐quinolyl pyrazolo[3,4‐d]pyridazine 13 derivatives were also prepared by cyclocondensation reactions of 2 with hydroxylamine hydrochloride and 7 with acetaldehyde, respectively.  相似文献   

2.
5‐Hydrazineyl‐3‐methyl‐1H‐pyrazole ( 1 ) was used as a starting material for the synthesis of novel pyrazolo[3,4‐c][1,2]diazepine derivatives 3 , 4 , and 6a,b by its reaction with acetylacetone, ethyl acetoacetate, and isatylidene derivatives 5a,b , respectively. Also, pyrazolo[3,4‐c][1,2]diazepine derivative 11 was synthesized via multicomponent reaction of 1 , benzaldehyde, and malononitrile. Moreover, compound 1 was used for synthesis novel pyrazolo[3,4‐c]pyrazole derivative 7 by its reaction with isatin. In addition, pyrazolo[3,4‐c]pyrazole derivatives 18a–c were synthesized by treatment of 2‐cyano‐N′‐(3‐methyl‐1H‐pyrazol‐5‐yl)acetohydrazide ( 13 ) with aromatic aldehydes 16a–c . The newly synthesized compounds were valeted by means of analytical and spectral data. All newly synthesized compounds were screened for their antioxidant activities. Compounds 3 , 13 , 18b , and 18c showed higher radical‐scavenging activities.  相似文献   

3.
This research work describes the synthesis and biological properties of some novel isolated or fused heterocyclic ring systems with pyrazole, for example; enaminones containing pyrazolone ring photochromic functional unit, 4‐[(4‐chlorophenylamino)methylene]‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one (3) and some analogous derivatives 4, 9, and 10, also as pyrazolo[3,4‐b]pyridine, pyrazolo[3,4‐b]quinoline, pyrazolo[3′,4′:4,5]thieno[2,3‐c]pyrazoline and pyrazolo[3,4‐c]pyrazole were synthesized and characterized. Newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, mass spectral data and quantum mechanical calculations. Selected products were tested for their antibacterial and antitumor agents.  相似文献   

4.
Pyrimido[2“,1”:5′,6′]pyrazolo[3′,4′:4,5]‐pyrimido[1,6‐a]benzoimidazoloe‐2,8(1H,7H)‐diones, and [1,2,4]‐triazino‐[3“,4”:5′,6′]pyrazolo[3′,4′:4,5]pyrimido[1,6‐a]benzimidazol‐8(7H)‐ones were synthesized in a good yields via 1‐amino‐4‐methyl‐3,4‐dihydro‐5H‐pyrazolo[3′,4′:4,5]pyrimido[1,6‐a]benzoimidazolo‐5‐one and the appropriate active methylene compounds. Structures of the newly synthesized compounds were elucidated on the basis of elemental analyses, spectral data, and alternative synthesis methods whenever possible.  相似文献   

5.
Efficient and suitable methods for the synthesis of novel class of simple and fused heterocyclic compounds were prepared starting with 1‐naphthyl‐2‐cyanoacetamide and commercially available reagents. The cyclocondensation of 1‐naphthyl‐2‐cyanoacetamide with sulfanylacetic acid furnished phenylthiazolinone derivative. Stirring of the starting compound with PhNCS afforded thiocarbamoyl derivative which underwent heterocyclization with chloroacetyl chloride to give thiazolinone derivative. 5‐Aminopyrazole derivative was prepared by following mild procedures via refluxing the last thiocarbamoyl with hydrazine hydrate. Different synthetic approaches were discussed to obtain the novel fused pyrazolo[1,5‐a ]pyrimidine, 4H‐pyrazolo[3,4‐d ]pyrimidin‐4‐one moieties involving the reaction of the prepared 5‐aminopyrazole with a ) 1, 3‐dielectrophilic centers (acetylacetone, acetoacetanilide), b ) arylidines of malononitrile, and c ) isothiocyanate derivatives. The action of iced sodium nitrite solution in acidic medium on the last 5‐aminopyrazole gave pyrazolo[3,4‐d ][1,2,3]triazine. All novel structure were elucidated by different spectroscopic data (IR, MS, 1H, and 13C NMR) and elemental analysis.  相似文献   

6.
5‐Amino‐4‐formyl pyrazole carboxylate gave facile reactions with malononitrile, hydrazine, and ketones in the presence of piperidine furnished substituted pyrazolo[3,4‐b]pyridines and pyrazolo[3,4‐b]quinolones. The pyridazine sulfonamides were obtained by the reaction of 5‐chloro 4‐formyl pyrazole carboxylate with sulfonamide derivatives.  相似文献   

7.
A new convenient synthon for heterocyclic chemistry, namely 1H‐pyrazolo[3,4‐b]pyridin‐3‐ylguanidine was successfully prepared by selective guanylation of 1H‐pyrazolo[3,4‐b]pyridin‐3‐amine. A series of 3,4‐dihydropyrido[2′,3′:3,4]pyrazolo[1,5‐a][1,3,5]triazin‐2‐amines was synthesized from 1H‐pyrazolo[3,4‐b]pyridin‐3‐ylguanidine using aldehydes or ketones as one‐carbon inserting reagents. The tautomeric preferences of the products were determined using spectroscopic (e.g., 2D NOESY NMR) and single crystal X‐ray diffraction data.  相似文献   

8.
2‐Acetylbenzothiazole ( 1 ) reacts with dimethylformamide dimethylacetal (DMF‐DMA) to afford the enaminone 2. Compound 2 reacts regioselectively with some nitrilimines 5a–d and nitrile oxides 6b–d to afford the novel pyrazole and isoxazole derivatives 11a–d and 12b–d, respectively, which react with hydrazine hydrate to give the new pyrazolo[3,4‐d]pyridazine and isoxazolo[3,4‐d]pyridazine derivatives 13a–d and 14b–d, respectively. The enaminone 2 reacts with 1H‐benzimidazole‐2‐acetonitrile ( 17 ) to afford the pyrido[1,2‐a]benzimidazole derivatives 19. Compound 2 reacts also with 5‐amino‐3‐phenylpyrazole ( 20 ) and with guanidine to afford the new pyrazolo[1,5‐a]pyrimidine and the 2‐aminopyrimidine derivatives 22 and 24, respectively. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 417–422, 1999  相似文献   

9.
Dimethyl acetylenedicarboxylate (DMAD) is a very important and useful reagent for the preparation of dimethyl heterocyclic‐o‐dicarboxylates, which are key intermediates in the synthesis of fused pyridazine derivatives. The synthesis of thiopyranes by the Diels‐Alder reaction of dithiocarboxylate derivatives, synthesis of various cyclazines by [2 + 8] cycloaddition reactions, and synthesis of dimethyl pyrazolo[3,4‐b]pyridine‐5,6‐dicarboxylates and polycyclic heterocycles containing the 1,6‐naphthyridine ring system by the reaction of o‐aminonitrile compounds with DMAD are described here.  相似文献   

10.
A series of 1,3,6‐trisubstituted and 1,3,5,6‐tetrasubstituted pyrazolo[3,4‐b]pyridines 5 has been synthesized by Friedlander condensation of 5‐arninopyrazole‐4‐carbaldehydes 3 with α‐methylene ketones such as acetone (4a) or acetophenones 4b‐f with potassium hydroxide as basic catalyst. Condensation of 5‐aminopyrazole‐4‐carbaldehydes 3 and unsymmetric dialkylketones 6 yielded mixtures of isomeric pyra‐zolo[3,4‐b]pyridine derivatives 7 and 8 . Condensation of 5‐aminopyrazole‐4‐carbaldehydes 3 with CH‐acidic acylacetonitriles 9 and acylacetates 11 with piperidine as basic catalyst yielded pyrazolo[3,4‐b]pyri‐dine‐5‐carbonitriles 10 and pyrazolo[3,4‐b]pyridine‐5‐carboxylates 12 ; with diethyl malonate 13 as CH‐acidic component, pyrazolo[3,4‐b]pyridin‐6‐ones 14 were obtained.  相似文献   

11.
2‐Benzyl‐ and 2‐aryloxymethyl‐3‐amino‐1‐phenyl‐pyrazolo[3,4‐d]pyrimidine‐4‐ones 5a–f have been synthesized by reacting the corresponding arylacetylamino derivatives 3a–f with hydrazine hydrate. Thionation of compounds 5d–f by action of P2S5 in pyridine yielded 2‐aryloxy‐methyl‐3‐amino‐1‐pheny‐lpyrazolo[3,4‐d]pyrimidin‐4‐thions 6a–c . 2,5‐Diphenyl‐2,3‐dihydro‐1H‐pyrazolo[5′,1′:4:5]pyrazolo[3,4‐d]pyrimidine‐8‐one ( 8 ) was also obtained via reaction of ethyl‐2‐cinnamoylamino‐1‐phenyl‐pyrazole‐4‐car‐boxylate ( 7 ) with hydrazine hydrate. The prepared compounds were screened in vitro for their antimicrobial activity. Some of the tested compounds were found to be active at 100 μg/ml compared with reference compounds (Ampicillin and Trivid) as antibacterial agents and claforan as antifungal agent. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:530–534, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10187  相似文献   

12.
Novel pyrazolo[3,4‐h][1,6]naphthyridine derivatives 6 , 8 , 9 , 11 , 13 , and 15 have been synthesized by Friedlander condensation of new 4‐amino‐3‐methyl‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbaldehyde (o‐aminoaldehyde) 4 with active methylene ketones, such as symmetric acetone 5a , monoalkylketones 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , unsymmetrical dialkyl ketones 7a , 7b , p‐bromophenylacetonitrile 10 , β‐ketoester 12a , β‐ketoamide 12b , or diethyl malonate 14 , respectively. J. Heterocyclic Chem., (2011).  相似文献   

13.
3‐Diazotized aminopyrazolo[3,4‐b]pyridines 2a,b used as good synthons for the synthesis of 3‐thiadiazolinylpyrazolo[3,4‐b]pyridines 8a,b through their reactions with thiocyanatoacetophenone ( 6 ) and pyrido[2,3:3′,4′]pyrazolo[5,1‐c][1,2,4]triazines 5a‐d via their reactions with several active methylene containing reagents: 3a,b, 12, 16, 20, 23a‐d and 26a‐c . All the structures of the newly synthesized heterocyclic compounds were established by considering the data of IR,1H NMR and mass spectra in addition to the synthesis of most newly synthesized heterocyclic compounds via other routes.  相似文献   

14.
A novel imidazo[4′,5′:3,4]pyrazolo[5,1‐c][1,2,4]triazine‐4,8‐dione heterocyclic system was synthesized starting from available 4‐amino‐6‐tert‐butyl‐3‐methylthio‐1,2,4‐triazin‐5(4H)‐one in four steps with 28% overall yield.  相似文献   

15.
The cycloaddition reaction of cyclic imidates, 2‐benzyl‐5,6‐dihydro‐4H‐1,3‐oxazines 1a , 1b , 1c , 1d , 1e , 1f , with dimethyl acetylenedicarboxylate 2 , trimethyl ethylenetricarboxylate 4 , or dimethyl 2‐(methoxymethylene)malonate 6 afforded new fused heterocyclic compounds, such as methyl (6‐oxo‐3,4‐dihydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐ylidene)acetates 3a , 3b , 3c , 3d , 3e , 3f (71–79%), dimethyl 2‐(6‐oxo‐3,4,6,7‐tetrahydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐yl)malonates 5b , 5c , 5d , 5e , 5f (43–71%), or methyl 6‐oxo‐3,4‐dihydro‐2H,6H‐pyrido[2,1‐b]‐1,3‐oxazine‐7‐carboxylates 7a , 7b , 7c , 7d , 7e , 7f (32–59%), respectively. In these reactions, 1a , 1b , 1c , 1d , 1e , 1f (cyclic imidates, iminoethers) functioned as their N,C‐tautomers (enaminoethers) 2 to α,β‐unsaturated esters 2 , 4, and 6 to give annulation products 3 , 5 , and 7 following to the elimination of methanol, respectively. J. Heterocyclic Chem., (2011).  相似文献   

16.
Synthesis of pyrazolo[1,5‐a]pyrimidines, [1,2,4]triazolo[1,5‐a]pyrimidine, 8,10‐dimethyl‐2‐(5‐methyl‐1‐phenyl‐4,5‐dihydro‐1H‐1,2,3‐triazol‐4‐yl)pyrido[2′,3′:3,4]‐pyrazolo[1,5‐a]pyrimidine, benzo[4,5]imidazo[1,2‐a]pyrimidine via heterocyclic amines, and sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐triazole‐4‐yl)prop‐2‐en‐1‐one were carried out. Also, synthesis of isoxazoles, and pyrazoles from sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐triazole‐4‐yl)prop‐2‐en‐1‐one and hydroxymoyl chlorides and hydrazonoyl halides, respectively, were made. Analogously, (1,2,3‐triazol‐4‐yl)thieno[2,3‐b]pyridine derivatives were obtained from sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐ triazole‐4‐yl)prop‐2‐en‐1‐one and cyanothioacetamide followed by its reacting with active methylene compounds. In addition to full characterization of all synthesized compounds, they were tested to evaluate their antimicrobial activities, and some compounds showed competitive activities to those of tetracycline, the typical antibacterial drug, and clotrimazole, the typical antifungal drug.  相似文献   

17.
Several new derivatives of oxazolo[5,4‐d]pyrimidine ( 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h ) have been synthesized through the reaction of 2,4‐dichloro‐6‐methyl‐5‐nitropyrimidine ( 2 ) with aryl carboxylic acids in refluxing POCl3. Further treatment of compounds ( 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h ) with hydrazine hydrate gave the hydrazine derivatives ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h ) that were subsequently cyclized into a novel heterocyclic system, oxazolo[5,4‐d][1,2,4]triazolo[4,3‐a]pyrimidine ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l , 5m , 5n , 5o , 5p ) and ( 7a , 7b , 7c , 7d ) on treatment with triethylorthoesters or carbondisulfide and alkylhalides, respectively.  相似文献   

18.
6‐(2‐Thienyl)‐4‐(trifluoromethyl)‐1H‐pyrazolo[3,4‐b]pyridine‐3‐amine reacted with different active methylene compounds to afford pyridopyrazolopyrimidine derivatives. On the other hand, it reacted with some halo compounds to give the imidazo[1′,2′:1,5]pyrazolo[3,4‐b]pyridine derivatives. Also, it diazotized to give the corresponding diazonium chloride that is coupled with several active methylene compounds to give the corresponding triazine derivatives. Furthermore, compound 3‐amino‐6‐(2(thienyl)‐4‐(trifluoromethyl)thieno[2,3‐b]pyridine‐2‐carbohydrazide reacted with some β‐dicarbonyl compounds and some sulfur‐containing compounds to afford the corresponding pyrazolyl oxadiazolylthieno[2,3‐b]pyridine derivatives.  相似文献   

19.
As a continuation of our search for new heterocyclic compounds, the synthesis of pyrimido[5′,4′:5,6][1,4]thiazino[2,3‐b]quinoxaline ring system is described. A series of new derivatives of this heterocyclic system ( 3a–d ) have been synthesized through the one‐pot heterocyclization of the appropriate 5‐amino6‐methylpyrimidine‐4‐thiols and 2,3‐dichloroquinoxaline in the presence of K2CO3 in dimethylformamide under reflux. N‐alkylation of the synthesized compounds with alkyl halides in KOH/dimethylformamide also gave the desired new derivatives of N‐alkylated pyrimido[5′,4′:5,6][1,4]thiazino[2,3‐b]quinoxalines ( 4a–h ). All the synthesized products were characterized and confirmed by their spectroscopic and microanalytical data.  相似文献   

20.
The synthetic utility of 1,3‐dipolar cycloaddition of DMAD to sydnones has been exploited in the preparation of new 1‐aryl‐4,5‐dihydro‐1H‐pyrazolo[3,4‐d]pyridazine‐3,6‐diones 7a‐j and their aromatic 3,6‐dichloro analogues 8a‐j . The lactam‐lactim tautomerism of compound 7a has been studied by the semi emperical (PM3) and ab initio methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号