共查询到20条相似文献,搜索用时 15 毫秒
1.
Ying Yang Fan‐Zhi Kong Ji Liu Jun‐Min Li Xiao‐Ping Liu Guo‐Qing Li Ju‐Fang Wang Hua Xiao Liu‐Yin Fan Shan Li 《Electrophoresis》2016,37(14):1992-1997
In this work, a simple and novel sheath‐flow sample injection method (SFSIM) is introduced to reduce the band broadening of free‐flow zone electrophoresis separation in newly developed self‐balance free‐flow electrophoresis instrument. A needle injector was placed in the center of the separation inlet, into which the BGE and sample solution were pumped simultaneously. BGE formed sheath flow outside the sample stream, resulting in less band broadening related to hydrodynamics and electrodynamics. Hemoglobin and C‐phycocyanin were successfully separated by the proposed method in contrast to the poor separation of free‐flow electrophoresis with the traditional injection method without sheath flow. About 3.75 times resolution enhancement could be achieved by sheath‐flow sample injection method. 相似文献
2.
Yong Liu Dong Zhang Shiwu Pang Yanyun Liu Yu Shang 《Journal of separation science》2015,38(1):157-163
Graphene oxide nanosheets often bear a wide size distribution. However, it is critical to have nanosheets with narrow size distribution for their unique size‐dependent physiochemical properties, and nanosheets with a narrow size distribution are the cornerstones for application. Therefore, efficient separation methods of graphene nanosheets have been given considerable attention in many scientific areas recently. Free‐flow electrophoresis is extensively used in the separation and purification of biological molecules with continuous flow separation. The charged graphene oxide nanosheets to some extent are very close in size to biological molecules and share similarity in motion behavior in an electric field. Thus, in the present work, we present a new and simple means to separate graphene oxide nanosheets into more mono‐dispersed size groups by using the free‐flow electrophoresis technique. By optimizing the separation conditions, we were able to obtain graphene oxide sheets with narrow size distribution. The separated samples were characterized by atomic force microscopy, and the size measurements were made by using the software “Image Pro Plus.” In addition, a brief discussion is also given into the theoretic background of the separation of graphene oxide according to the size by the technique of preparative free‐flow electrophoresis. 相似文献
3.
Qiang Zhang Chen‐Gang Guo Fan‐Zhi Kong Cheng‐Xi Cao Liu‐Yin Fan Xin‐Qiao Jin 《Journal of separation science》2014,37(11):1359-1363
Uneven flow in free‐flow electrophoresis (FFE) with a gravity‐induced fraction collector caused by air bubbles in outlets and/or imbalance of the surface tension of collecting tubes would result in a poor separation. To solve these issues, this work describes a novel collector for FFE. The collector is composed of a self‐balance unit, multisoft pipe flow controller, fraction collector, and vacuum pump. A negative pressure induced continuous air flow rapidly flowed through the self‐balance unit, taking the background electrolyte and samples into the fraction collector. The developed collector has the following advantages: (i) supplying a stable and harmonious hydrodynamic environment in the separation chamber for FFE separation, (ii) effectively preventing background electrolyte and sample flow‐back at the outlet of the chamber and improving the resolution, (iii) increasing the preparative scale of the separation, and (iv) simplifying the operation. In addition, the cost of the FFE device was reduced without using a multichannel peristaltic pump for sample collection. Finally, comparative FFE experiments on dyes, proteins, and cells were carried out. It is evident that the new developed collector could overcome the problems inherent in the previous gravity‐induced self‐balance collector. 相似文献
4.
Pingli Wang Lihua Zhang Yichu Shan Yongzheng Cong Yu Liang Bin Han Zhen Liang Yukui Zhang 《Journal of separation science》2010,33(13):2039-2044
A one‐step etching method was developed to fabricate glass free‐flow electrophoresis microchips with a rectangle separation microchamber (42 mm‐long, 23 mm‐wide and 28 μm‐deep), in which two glass bridges (0.5 mm‐wide) were made simultaneously to prevent bubbles formed by electrolysis near the Pt electrode from entering the separation chamber. By microchip free‐flow zone electrophoresis, with 200 V voltage applied, the baseline separation of three FITC labeled proteins, ribonuclease B, myoglobin and β‐lactoglobulin, was achieved, with resolution over 1.78. Furthermore, with 2.5 mM Na2SO4 added into the electrode buffer to form higher electrical field strength across separation microchamber than electrode compartments, similar resolution of samples was achieved with the applied voltage decreased to 75 V, which could obviously decrease Joule heat during continuous separation. All these results demonstrate that the free‐flow electrophoresis microchip fabricated by one‐step etching method is suitable for the continuous separation of proteins, which might become an effective pre‐fractionation method for proteome study. 相似文献
5.
Jing‐Hua Yang Jing Shao Hou‐Yu Wang Jing‐Yu Dong Liu‐Yin Fan Cheng‐Xi Cao Yu‐Quan Xu 《Electrophoresis》2012,33(18):2925-2930
Herein, a simple novel free‐flow electrophoresis (FFE) method was developed via introduction of organic solvent into the electrolyte system, increasing the solute solubility and throughput of the sample. As a proof of concept, phenazine‐1‐carboxylic acid (PCA) from Pseudomonas sp. M18 was selected as a model solute for the demonstration on feasibility of novel FFE method on account of its faint solubility in aqueous circumstance. In the developed method, the organic solvent was added into not only the sample buffer to improve the solubility of the solute, but also the background buffer to construct a uniform aqueous‐organic circumstance. These factors of organic solvent percentage and types as well as pH value of background buffer were investigated for the purification of PCA in the FFE device via CE. The experiments revealed that the percentage and the types of organic solvent exerted major influence on the purification of PCA. Under the optimized conditions (30 mM phosphate buffer in 60:40 (v/v) water‐methanol at an apparent pH 7.0, 3.26 mL/min background flux, 10‐min residence time of injected sample, and 400 V), PCA could be continuously purified from its impurities. The flux of sample injection was 10.05 μL/min, and the recovery was up to 93.7%. An 11.9‐fold improvement of throughput was found with a carrier buffer containing 40% (v/v) methanol, compared with the pure aqueous phase. The developed procedure is of evident significance for the purification of weak polarity solute via FFE. 相似文献
6.
Shuai Wang Lingyi Zhang Haofan Sun Zhanying Chu Haihong Chen Yameng Zhao Weibing Zhang 《Electrophoresis》2019,40(18-19):2610-2617
Free‐flow isoelectric focusing (FFIEF) has the merits of mild separation conditions, high recovery and resolution, but suffers from the issues of ampholytes interference and high cost due to expensive carrier ampholytes. In this paper, a home‐made carrier ampholyte‐free FFIEF system was constructed via orientated migration of H+ and OH? provided by electrode solutions. When applying an electric field, a linear pH gradient from pH 4 to 9 (R2 = 0.994) was automatically formed by the electromigration of protons and hydroxyl ions in the separation chamber. The carrier ampholyte‐free FFIEF system not only avoids interference of ampholyte to detection but also guarantees high separation resolution by establishing stable pH gradient. The separation selectivity was conveniently adjusted by controlling operating voltage and optimizing the composition, concentration and flow rate of the carrier buffer. The constructed system was applied to separation of proteins in egg white, followed by MADLI‐TOF‐MS identification. Three major proteins, ovomucoid, ovalbumin and ovotransferrin, were successfully separated according to their pI values with 15 mmol/L Tris‐acetic acid (pH = 6.5) as carrier buffer at a flow rate of 12.9 mL/min. 相似文献
7.
Su Chen James F. Palmer Wei Zhang Jing Shao Si Li Liu‐Yin Fan Ren Sun Yu‐Chao Dong Cheng‐Xi Cao 《Electrophoresis》2009,30(11):1998-2007
This paper describes a novel free‐flow electrophoresis (FFE), which is joined with gratis gravity, gas cushion injector (GCI) and self‐balance collector instead of multiple channel pump, for the purpose of preparative purification. The FFE was evaluated by systemic experiments. The results manifest that (i) even though one‐channel peristaltic pump is used for the driving of background buffer, there is still stable flow in the FFE chamber; (ii) the stable flow is induced by the gravity‐induced pressure due to the difference of buffer surfaces in the GCI and self‐balance collector; (iii) the pulse flow of background buffer induced by the peristaltic pump is greatly reduced by the GCI with good compressibility of included air; (iv) the FFE can be well used for zone electrophoretic separation of amino acids; (v) up to 20 inlets simultaneous sample injection and up to five to tenfold condensation of amino acid can be achieved by combining the FFE device with the method of moving reaction boundary. To the best of authors' knowledge, FFE has not been used for such separation and condensation of amino acids. The relevant results achieved in the paper have evident significance for the development of preparative FFE. 相似文献
8.
Here, a simple micro free‐flow electrophoresis (μFFE) was developed for fluorescence sensing of monosaccharide via supermolecule interaction of synthesized boronic acid functionalized benzyl viologen (ο‐BBV) and fluorescent dye. The μFFE contained two open electrode cavities and an ion‐exchange membrane was sandwiched between two polymethylmethacrylate plates. The experiments demonstrated the following merits of developed μFFE: (i) up to 90.5% of voltage efficiency due to high conductivity of ion‐exchange membrane; (ii) a strong ability against influence of bubble produced in two electrodes due to open design of electrode cavities; and (iii) reusable and washable separation chamber (45 mm × 17 mm × 100 μm, 77 μL) avoiding the discard of μFFE due to blockage of solute precipitation in chamber. Remarkably, the μFFE was first designed for the sensing of monosaccharide via the supermolecule interaction of synthesized ο‐BBV, fluorescent dye, and monosaccharide. Under the optimized conditions, the minimum concentration of monosaccharide that could be detected was 1 × 10?11 M. Finally, the developed device was used for the detection of 0.3 mM glucose spiked in human urine. All of the results demonstrated the feasibility of monosaccharide detection via the μFFE. 相似文献
9.
Experimental study on the optimization of general conditions for a free‐flow electrophoresis device with a thermoelectric cooler† 下载免费PDF全文
Qiang Zhang Xiao‐Ping Liu Fan‐Zhi Kong Cheng‐Xi Cao Xin‐Qiao Jin 《Journal of separation science》2014,37(23):3555-3563
With a given free‐flow electrophoresis device, reasonable conditions (electric field strength, carrier buffer conductivity, and flow rate) are crucial for an optimized separation. However, there has been no experimental study on how to choose reasonable general conditions for a free‐flow electrophoresis device with a thermoelectric cooler in view of Joule heat generation. Herein, comparative experiments were carried out to propose the selection procedure of general conditions in this study. The experimental results demonstrated that appropriate conditions were (i) <67 V/cm electric field strength; (ii) lower than 1.3 mS/cm carrier buffer conductivity (Tris‐HCl: 20 mM Tris was titrated by HCl to pH 8.0); and (iii) higher than 3.6 mL/min carrier buffer flow rate. Furthermore, under inappropriate conditions (e.g. 400 V voltage and 40 mM Tris‐HCl carrier buffer), the free‐flow electrophoresis separation would be destroyed by bubbles caused by more Joule heating. Additionally, a series of applications under the appropriate conditions were performed with samples of model dyes, proteins (bovine serum albumin, myoglobin, and cytochrome c), and cells (Escherichia coli, Streptococcus thermophilus, and Saccharomyces cerevisiae). The separation results showed that under the appropriate conditions, separation efficiency was obviously better than that in the previous experiments with randomly or empirically selected conditions. 相似文献
10.
Jing Shao Liu‐Yin Fan Wei Zhang Chen‐Gang Guo Si Li Yu‐Quan Xu Cheng‐Xi Cao 《Electrophoresis》2010,31(20):3499-3507
The low‐concentration phenazine‐1‐carboxylic acid (PCA) (=0.3 mM) extracted from fermentation broth of Pseudomonas sp. M18 was selected to be purified with a newly facile free flow electrophoresis (FFE) device with gratis gravity. Three factors of pH value and concentration of background buffer, and the cooling circle of FFE device were investigated for the purification of PCA in the FFE device. It was found that the pH value and concentration of background buffer had mild influences on the separation of PCA whether with cooling circle or not. However, the cooling circle had a much greater impact on the separation of PCA. The controlling of the band zone of PCA in FFE chamber would be difficult if without cooling circle, while the controlling would become easy if with cooling circle. Under the optimal conditions (10 mM pH 5.5 phosphate as background buffer, 30 mM pH 5.5 phosphate buffer as electrode solution, 5.46 mL/min background flux, 10 min residence time of injected sample, and 500 V), PCA could be continuously prepared from its impurities with relative high purity. The flux of sample injection was 115 μL/min, viz. 7 mL sample throughput per hour, and the recovery was up to 85%. All of the experiments indicated that the FFE technique was a good alternative tool for the study on natural biological control agents. 相似文献
11.
Fang Geng Xi Huang Nannan Yan Lili Jia Meihu Ma 《Journal of separation science》2013,36(23):3717-3722
Hen egg white (EW) are one of the most ideal sources of active proteins, and ovomacroglobulin, as a protease inhibitor, has been demonstrated to possess numerous biological properties including antibacterial and anti‐inflammatory properties as well as activity for the treatment of keratitis. The objective of this study was to develop a simple and rapid method for the purification of ovomacroglobulin from hen EW on a laboratory scale. Hen EW was diluted with an equal volume of distilled water followed by a two‐step PEG precipitation to remove ovomucin and to obtain ovomacroglobulin‐rich precipitate. The precipitate was dissolved and further purified by gel filtration chromatography. Ovomacroglobulin was collected with a purity of 97.0 ± 0.3% by HPLC and a yield of 62.5%. The atomic force microscopy images showed that ovomacroglobulin molecules on a mica surface emerged as an “oval‐shaped plate” with a molecular volume of 1536.9 ± 330.0 nm3, indicating that purified ovomacroglobulin has an integrated molecular structure. With the improvement of PEG precipitation and the simplification of the chromatography, the whole purification process could be finished well within one working day. This protocol has an advantage of rapidity, and would facilitate studies of ovomacroglobulin. 相似文献
12.
Andrea Raab Barbara Pioselli Caroline Munro Jane Thomas‐Oates Jörg Feldmann 《Electrophoresis》2009,30(2):303-314
Although laser ablation (LA)‐ICP‐MS has been reported for the determination of metalloproteins separated by gel electrophoretic techniques (GE), systematic studies that define the conditions essential for successful measurements are still scarce. In this paper we present the results of our studies of basic conditions for the effective application of GE‐LA‐ICP‐MS for the separation of metal‐binding proteins, focusing on their stability during GE and post‐separation gel treatment. The stability of metal–protein complexes (haemoglobin, myoglobin, superoxide dismutase, carbonic anhydrase, transferrin, albumin, cytochrome c) during GE is dependent on the nature of the metal–protein interaction and the principle of separation. We have observed that non‐denaturing GE is a suitable separation technique for most metal–protein complexes (e.g. Zn in carbonic anhydrase and Fe in Tf and myoglobin were quantitatively recovered in a spiked liver cytosol), whereas separation by denaturing GE strongly impaired the stability of the complexes. Equally important is the post‐separation treatment of the gel to enable successful detection of the metal. LA‐ICP‐MS requires drying of the gel without loss of protein‐bound metal or cracking of the gel. This was successfully achieved using glycerol followed by heating. We demonstrate that staining of the gel prior to LA‐ICP‐MS using silver or Coomassie blue is not recommended, since most protein‐bound metal is lost during the staining procedure. Furthermore it has been shown that only line scanning with a speed of less than 30 μm/s can reliably distinguish between lines 1 mm apart, while raster spot analysis carries the risk of misinterpretation due to contamination in/on inhomogeneous gels. 相似文献
13.
Jennifer Coyne Albrecht Akira Kotani Jennifer S. Lin Annelise E. Barron 《Electrophoresis》2013,34(4):590-597
We demonstrate here the power and flexibility of free‐solution conjugate electrophoresis (FSCE) as a method of separating DNA fragments by electrophoresis with no sieving polymer network. Previous work introduced the coupling of FSCE with ligase detection reaction (LDR) to detect point mutations, even at low abundance compared to the wild‐type DNA. Here, four large drag‐tags are used to achieve free‐solution electrophoretic separation of 19 LDR products ranging in size from 42 to 66 nt that correspond to mutations in the K‐ras oncogene. LDR‐FSCE enabled electrophoretic resolution of these 19 LDR‐FSCE products by CE in 13.5 min (E = 310 V/cm) and by microchip electrophoresis in 140 s (E = 350 V/cm). The power of FSCE is demonstrated in the unique characteristic of free‐solution separations where the separation resolution is constant no matter the electric field strength. By microchip electrophoresis, the electric field was increased to the maximum of the power supply (E = 700 V/cm), and the 19 LDR‐FSCE products were separated in less than 70 s with almost identical resolution to the separation at E = 350 V/cm. These results will aid the goal of screening K‐ras mutations on integrated “sample‐in/answer‐out” devices with amplification, LDR, and detection all on one platform. 相似文献
14.
We describe a novel approach to generate dynamic pH gradients suited to fractionate or purify samples of biomolecules or particles such as proteins and viruses in tiny volumes. The method combines diffusion and electromigration between micro-scaled channels embedded in hydrogel. For the used geometry and in accordance with numerical calculations the gel-channel system reaches a tuneable, steady-state pH gradient after a few minutes. For quantification of experimentally generated pH-profiles, the concentration independent extinction ratio of phenol red at two wavelengths is used. The proposed electrophoretic flow-cell is simple and flexible since no Immobilines are required to establish the pH gradient. 相似文献
15.
Andras Gaspar Mourad Harir Norbert Hertkorn Philippe Schmitt‐Kopplin 《Electrophoresis》2010,31(12):2070-2079
Free‐flow electrophoresis (FFE), a preparative free zone electrophoretic method, was used offline in conjunction with ultrahigh‐resolution FT/ion cyclotron resonance ‐MS to resolve the complexity of Suwannee River fulvic acid (SRFA). Before MS, the FFE separation conditions and the compatibility with ESI were optimized. The constituents in SRFA were effectively separated based on their charge states and sizes. The obtained mass spectra were compared by means of van Krevelen diagrams and the calculated aromaticity indices of the individual constituents were used to describe the distribution of aromatic/unsaturated structures across the FFE‐fractionated samples. The consolidated number of ions observed within the individual SRFA fractions were much higher than those of the bulk samples alone, demonstrating extensive ion suppression effects in bulk SRFA likely also operating in the analysis of complex biogeochemical mixtures in flow injection mode. The FFE approach allows for producing sizable amounts of sample from dilute solutions, which can be easily fractionated into dozens of individual samples with the possibility of further in‐depth characterization. 相似文献
16.
In this paper, a novel mode of free-flow affinity electrophoresis (FFAE) was developed to indirectly enhance the separation of free-flow electrophoresis (FFE). In the mode of FFAE, a Ni(II) with high electric charge density and histidine (His) is chosen as a model ligand and target solute, respectively. Through the controlling of experimental conditions (10 mM pH 6.0 Na(2)HPO(4)-NaH(2)PO(4) with 2.0 mM NiCl(2)·6H(2)O background buffer), Ni(II) can combine with His and the combination leads to the high electric charge density of affinity complex of His-Ni(II) in contrast to the low density of free His molecule. But the ligand has weak interaction with uninterested amino acids. Thus, the mobility of His existing as His-Ni(II) is greatly increased from 14.5×10(-8) m(2) V(-1) s(-1) to 30.2 × 10(-8) m(2) V(-1) s(-1), while those mobilities of uninterested amino acids are almost constant. By virtue of the mode, we developed the FFAE procedure and conducted the relevant experiments. The experiments demonstrated the following merits of the FFAE technique: (i) clear enhancement of separation between the target solute of His and uninterested amino acids; (ii) simplicity, and (iii) low cost. Furthermore, the technique was used for the continuous separation of His from its complex sample, and the purity of His was near to 100%. All of the results demonstrate the feasibility of affinity separation in FFE. The developed FFAE may be used in the separation and pretreatment of some biological molecules (e.g. peptides). 相似文献
17.
Interaction of albumins and heparinoids investigated by affinity capillary electrophoresis and free flow electrophoresis 下载免费PDF全文
《Electrophoresis》2018,39(4):569-580
A fast and precise affinity capillary electrophoresis (ACE) method has been applied to investigate the interactions between two serum albumins (HSA and BSA) and heparinoids. Furthermore, different free flow electrophoresis methods were developed to separate the species which appears owing to interaction of albumins with pentosan polysulfate sodium (PPS) under different experimental conditions. For ACE experiments, the normalized mobility ratios (∆R/Rf), which provided information about the binding strength and the overall charge of the protein‐ligand complex, were used to evaluate the binding affinities. ACE experiments were performed at two different temperatures (23 and 37°C). Both BSA and HSA interact more strongly with PPS than with unfractionated and low molecular weight heparins. For PPS, the interactions can already be observed at low mg/L concentrations (3 mg/L), and saturation is already obtained at approximately 20 mg/L. Unfractionated heparin showed almost no interactions with BSA at 23°C, but weak interactions at 37°C at higher heparin concentrations. The additional signals also appeared at higher concentrations at 37°C. Nevertheless, in most cases the binding data were similar at both temperatures. Furthermore, HSA showed a characteristic splitting in two peaks especially after interacting with PPS, which is probably attributable to the formation of two species or conformational change of HSA after interacting with PPS. The free flow electrophoresis methods have confirmed and completed the ACE experiments. 相似文献
18.
《Journal of separation science》2003,26(18):1629-1634
Cortex Moutan (Radicis Cortex Moutan), the dried root bark of Paeonia moutan and P. spp., contains a series of water‐soluble tannins. With the eight components, 1 4,6‐di‐O‐GG (4,6‐di‐O‐galloyl‐D‐glucose), 2 1,2,3,6‐tetra‐O‐GG, 3 1,2,3,4,6‐penta‐O‐GG, 4 1,3,4,6‐tetra‐O‐GG, 5 3,4,6‐tri‐O‐GG, 6 1,3,6‐tri‐O‐GG, 7 3,6‐di‐O‐GG, and 8 1,2,6‐tri‐O‐GG, as marker substances, a rapid and efficient method of analysis based on HPLC and CE was developed. Using a phosphate eluent, a 5C18‐MS separating column, and a detection wavelength of 280 nm, HPLC was successfully used to analyze the eight constituents within 60 min. The analysis can be completed within 50 min, using the MEKC mode with a buffer composed of borate, SDS, and isopropanol, and a detection wavelength of 210 nm. The detection limit for the marker substances varied from 0.04 to 0.93 μg/mL for the HPLC method and 0.02 to 0.36 μg/mL for the CE method. 相似文献
19.
In situ photopolymerized polyacrylamide (PAAm) gel plugs are used as hydrodynamic flow control elements in a multidimensional microfluidic system combining IEF and parallel SDS gel electrophoresis for protein separations. The PAAm gel plugs offer a simple method to reduce undesirable bulk flow and limit reagent/sample crosstalk without placing unwanted constraints on the selection of separation media, and without hindering electrokinetic ion migration in the complex microchannel network. In addition to improving separation reproducibility, the discrete gel plugs integrated into critical regions of the chip enable the use of a simple pressure-driven sample injection method which avoids electrokinetic injection bias. The gel plugs also serve to greatly simplify operation of the spatially multiplexed system by eliminating the need for complex external fluidic interfaces. Using an FITC-labeled Escherichia coli cell lysate as a model system, the use of gel plugs is shown to significantly enhance separation reproducibility in a chip containing five parallel CGE channels, with an average variance in peak elution time of only 4.1%. 相似文献
20.
《Electrophoresis》2017,38(3-4):408-416
Serum levels of Prostate‐Specific Antigen (PSA) are not fully specific for prostate cancer (PCa) diagnosis and several efforts are focused on searching to improve PCa markers through the study of PSA subforms that could be cancer associated. We have previously reported by 2DE a decrease in the sialic acid content of PSA from PCa compared to benign prostatic hyperplasia patients based on the different proportion of the PSA spots. However, faster and more quantitative techniques, easier to automate than 2DE, are desirable. In this study, we examined the potential of CE for resolving PSA subforms in different samples and compared the results with those obtained by 2DE. We first fractionated by OFFGEL the subforms of PSA from seminal plasma according to their pI s and analyzed each separated fraction by 2DE and CE. We also analyzed PSA and high pI PSA, both from seminal plasma, and PSA from urine of a PCa patient. These samples with different PSA spots proportions by 2DE, due to different posttranslational modifications, also presented different CE profiles. This study shows that CE is a useful and complementary technique to 2DE for analyzing samples with different PSA subforms, which is of high clinical interest. 相似文献