首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bioactive Schiff base HL i.e. 2‐hydroxy‐benzoic acid(3,4‐dihydro‐2H ‐naphthalen‐1‐ylidene)‐hydrazide was synthesized by reacting equimolar amount of salicylic acid hydrazide and 1‐tetralone. Co(II), Ni(II) and Zn(II) complexes of ligand HL was synthesized in 1:1 and 1:2 molar ratio of metal to ligand. The structure of the synthesized ligand and metal complexes was established by elemental analysis, molar conductance, magnetic susceptibility measurements, electronic, IR and EPR spectral techniques. For determining the thermal stability the TGA has been done. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6–31 + g(d,p) basis set. Spectral data reveal that ligand behave uninegative tridentate in ML complexes and uninegative bidentate in ML2 complexes. On the basis of characterization octahedral geometry has been assigned for Co(II) and Ni(II) complexes, while tetrahedral for Zn(II) complexes. Antibacterial activity of the synthesized compounds were evaluated against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , Xanthomonas campestris and Pseudomonas aeruginosa and the results revealed that metal complexes show enhanced activity in comparison to free ligand.  相似文献   

2.
Four new complexes of Au(III), Pd(II), Ni(II), and Cu(II) ions were synthesized, derived from a novel heterocyclic ligand (L) that has both triazole and tetrazole rings. The ligand synthesis was through successive steps to achieve both heterocyclic rings. The synthesized compounds were characterized using conventional techniques like infrared, ultra violet—visible and proton/carbon nuclear magnetic resonance spectroscopy, metal and thermal analyses, and molar conductivity. All complexes were suggested to have square planar geometry, gold, nickel, and palladium complexes were salts while copper neutral complexes have the chemical formulas; [AuL2]Cl.2H2O, [PdL2]Cl2.2H2O, [NiL2]Cl2.2H2O, and [CuL2]. The cytotoxic effect was studied on breast cancer cell line (MCF‐7 cell line) at different concentrations by using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay method, for the ligand (L) and complexes. The results showed that gold(III) and nickel(II) complexes have the highest cytotoxicity among all compounds against cancer cell lines.  相似文献   

3.
New Pd(II) and Zn(II) Schiff base complexes, derivatives of various salicylaldehydes and 1-amino-1-deoxy-d -sorbitol, synthesized in one step, have been investigated using TG, NMR, UV–Vis, and IR spectroscopy. Zinc(II) complexes show antifungal activity against Candida albicans and Aspergillus niger, while palladium(II) complexes show catalytic activity in Heck reaction of styrene and bromobenzene.  相似文献   

4.
Four novel Schiff base nickel(II) and copper(II) complexes, derived from the end‐on (μ1,1‐N3) azide, end‐to‐end (μ1,3‐NCS) thiocyanate, or phenolate oxygen bridges, have been synthesized and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Ni2(L1)2(MeCN)2(μ1,1‐N3)2]·MeOH ( 1 ), the dinuclear double end‐on azide‐bridged [Ni2(L2)2(MeOH)2(μ1,1‐N3)2][Ni2(L2)2(OH2)2(μ1,1‐N3)2]·MeOH ( 2 ), the dinuclear double end‐to‐end thiocyanate‐bridged [Cu2(L3)2(μ1,3‐NCS)2] ( 3 ), and the dinuclear double phenolate O‐bridged [Cu2(L4)2(NCS)2] ( 4 ), where HL1, HL2, HL3 and HL4 are four tridentate Schiff bases obtained by the condensation of 3,5‐dibromosalicylaldehyde with N‐ethylethane‐1,2‐diamine, of 3,5‐dichlorosalicylaldehyde with N‐methylpropane‐1,3‐diamine, of 3‐bromo‐5‐chlorosalicylaldehyde with 2‐aminomethylpyridine, and of 5‐nitrosalicylaldehyde with 2‐aminomethylpyridine, respectively. Each nickel(II) atom in 1 and 2 is in an octahedral coordination, while each copper(II) atom in 3 and 4 is in a square pyramidal coordination. There exists crystallographic inversion centre symmetry in each of the complexes.  相似文献   

5.
Newly synthesized mononuclear copper(II) and zinc(II) complexes containing an azo Schiff base ligand (L), prepared by condensation of 2-hydroxy-5-(o-tolyldiazenyl)benzaldehyde and propylamine, were obtained and then characterized using infrared and NMR spectroscopies, mass spectrometry and X-ray diffraction. Ligand L behaves as a bidentate chelate by coordinating through deprotonated phenolic oxygen and azomethine nitrogen. The copper and zinc complexes crystallize in triclinic and orthorhombic systems, respectively, with space groups P1 and Pca21. In these complexes, the Cu(II) ion is in a square planar geometry while the Zn(II) ion is in a distorted tetrahedral environment. The photochemical behaviors of ligand L, [Cu(L)2] and [Zn(L)2] were investigated. The azo group in L underwent reversible transcis isomerization under UV and visible irradiation. This process was inhibited for the complexes. In addition, ligand L and its copper and zinc complexes were assessed for their in vitro antibacterial activities against four pathogenic strains.  相似文献   

6.
《中国化学会会志》2017,64(9):1104-1110
A new unsymmetrical tridentate NNS Schiff base ligand, 2‐(2‐nitrophenylthio)‐N‐((pyridine‐2‐yl)methylene)benzenamine (L), and its Mn(II ), Ni(II ), Cu(II ), and Zn(II ) complexes were synthesized. These compounds were characterized by different physicochemical and spectroscopic techniques. The molecular structure of [NiL2 ](ClO4 )2 was determined by single‐crystal X‐ray diffraction. In this complex, two ligands coordinate through azomethine‐N, pyridine‐N, and thioether‐S, forming a mononuclear 6‐coordinate distorted octahedral geometry about a nickel.  相似文献   

7.
The study is focused on the synthesis of a new Co(II) and Ni(II) metal complexes, which is synthesized by the reaction of the isatin 4‐aminoantipyrine Schiff base ligand with selected divalent Co(II) and Ni(II) ions and their possible applications as flame retardant additives in paint formulations for surface coating application. The prepared metal complexes were characterized using a combination of Fourier transform infrared, elemental analysis, proton nuclear magnetic resonance, 13C‐NMR spectra, and mass spectroscopy. The prepared Schiff base ligand metal complexes were physically added to alkyd paint formulation to give coating formulations at a laboratory scale and then applied onto plywood and steel panels using a brush. The ignitability and oxygen index values obtained indicated that the paint which contained the prepared Co(II) and Ni(II) metal complexes as additives exhibited very good flame retardant. The physical and mechanical characteristics of the coatings were studied in order to estimate any disadvantages due to the incorporation of the additives. It was discovered that the added substances did not impact the hardness, flexibility, and adhesion of the prepared coating films. The gloss of the paint formulation film was improved due to the incorporation of the aromatic ring into the formulation and the level of the oil percent.  相似文献   

8.
In this article, N‐(2‐aminophenyl)arylsulfonamides (1–5) were successfully synthesized by the reaction of o‐phenylenediamine and various benzenesulfonyl chlorides. The Schiff base derivatives (1a–f; 4e) of those compounds were obtained using different aldehydes. Then, a series of neutral‐four coordinate Pd(II) complexes (6–10) were prepared from the reaction of Pd(OAc)2 and 1–5. On the other hand, when we tried to synthesize Pd(II) complexes containing Schiff base/sulfonamide ligands, two different situations were observed. Generally, when an electron‐donating group was attached to the imine fragment (1a–d) except for 1f, the Schiff base hydrolyzed and 6 was isolated. When an electron‐withdrawing group was attached to the imine fragment (1e, 4e), neutral four‐coordinate Pd(II) complexes (11–13) bearing Schiff base/sulfonamide ligands were isolated. The synthesized compounds were characterized by FT‐IR, elemental analysis and NMR spectroscopy. The complexes were used as a catalyst in the oxidation reaction of benzyl alcohol to benzaldehyde in the presence of H5IO6 in acetonitrile. All complexes showed satisfactory catalytic activity. The highest catalytic activity was obtained with 9. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
New Schiff base complexes of zinc(II), copper(II), nickel(II), and vanadium(IV) were synthesized using the Schiff base ligand formed by the condensation of 2-aminoethanethiol and 2-hydroxy-1-naphthaldehyde. The tetradentate Schiff base ligand N,N´-(3,4-dithiahexane-1,6-diyl)bis(2-hydroxy-1-naphthaleneimine), containing a disulfide bond, was coordinated to the metal(II) ions through the two azomethine nitrogen atoms and two deprotonated phenolic oxygens of two different ligands which was connected to each other by sulfur-sulfur bond. The molar conductivity values of complexes in DMSO solvent implied the presence of nonelectrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were studied in dimethylsulfoxide. The Schiff base ligand and its complexes were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of tetradentate Schiff base ligand was characterized by single crystal X-ray diffraction. The Schiff base ligand was contained disulfide bond. Furthermore, the binding interaction of these complexes with calf thymus DNA (CT-DNA) was investigated by different methods.  相似文献   

10.
Three new metal complexes [Cu(L)2] (1), [Co(L)2] (2) and [Zn(L)2] (3) have been prepared by the reaction of hydrated salts of metal (II) acetate with new Schiff base ligand HL, [2‐((4‐(dimethylamino)phenylimino)methyl)‐4,6‐di‐t‐butylphenol] and characterized by different physico‐chemical analyses such as elemental analysis, single XRD, 1H NMR, FTIR and UV–Vis spectroscopic techniques. Their biomolecular docking, antimicrobial and cytotoxicity studies have also been demonstrated. The proposed structure of Schiff base ligand HL and complex 2 are confirmed by Single crystal X‐ray crystallography study. This analysis revealed that metal (II) complexes remain in distorted tetrahedral coordination environments. The electronic properties such as HOMO and LUMO energies are carried out by gaseous phase DFT/B3LYP calculations using Gaussian 09 program. Complex 1 showed a good binding propensity to the DNA and HSA, during the assessment of docking studies. Schiff base ligand HL and its metal (II) complexes, 1–3 screened for their in vitro antimicrobial activities using the disc diffusion method against selected microbes. Complex 1 shows higher antimicrobial activity than complexes 2, 3 and Schiff base ligand HL. According to the results obtained from the cytotoxic studies, Schiff base ligand HL and its metal (II) complexes 1–3 have better cytotoxicity against MCF‐7 cell lines with potency higher than the currently used chemotherapeutic agent cyclophosphamide.  相似文献   

11.
New Co(II), Ni(II), and Cu(II) complexes were synthesized with the Schiff base ligand obtained by the condensation of sulfathiazole with salicylaldehyde. Their characterization was performed by elemental analysis, molar conductance, spectroscopic techniques (IR, diffuse reflectance and UV–Vis–NIR), magnetic moments, thermal analysis, and calorimetry (thermogravimetry/derivative thermogravimetry/differential scanning calorimetry), while their morphological and crystal systems were explained on the basis of powder X-ray diffraction results. The IR data indicated that the Schiff base ligand is tridentate coordinated to the metallic ion with two N atoms from azomethine group and thiazole ring and one O atom from phenolic group. The composition of the complexes was found to be of the [ML2]∙nH2O (M = Co, n = 1.5 (1); M = Ni, n = 1 (2); M = Cu, n = 4.5 (3)) type, having an octahedral geometry for the Co(II) and Ni(II) complexes and a tetragonally distorted octahedral geometry for the Cu(II) complex. The presence of lattice water molecules was confirmed by thermal analysis. XRD analysis evidenced the polycrystalline nature of the powders, with a monoclinic structure. The unit cell volume of the complexes was found to increase in the order of (2) < (1) < (3). SEM evidenced hard agglomerates with micrometric-range sizes for all the investigated samples (ligand and complexes). EDS analysis showed that the N:S and N:M atomic ratios were close to the theoretical ones (1.5 and 6.0, respectively). The geometric and electronic structures of the Schiff base ligand 4-((2-hydroxybenzylidene) amino)-N-(thiazol-2-yl) benzenesulfonamide (HL) was computationally investigated by the density functional theory (DFT) method. The predictive molecular properties of the chemical reactivity of the HL and Cu(II) complex were determined by a DFT calculation. The Schiff base and its metal complexes were tested against some bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The results indicated that the antibacterial activity of all metal complexes is better than that of the Schiff base.  相似文献   

12.
Transition metal complexes of type M(L)2(H2O)x were synthesized, where L is deprotonated Schiff base 2,4‐dihalo‐6‐(substituted thiazol‐2‐ylimino)methylphenol derived from the condensation of aminothiazole or its derivatives with 2‐hydroxy‐3‐halobenzaldehyde and M = Co2+, Ni2+, Cu2+ and Zn2+ (x = 0 for Cu2+ and Zn2+; x = 2 for Co2+ and Ni2+). The synthesized Schiff bases and their metal complexes were thoroughly characterized using infrared, 1H NMR, electronic and electron paramagnetic resonance spectroscopies, elemental analysis, molar conductance and magnetic susceptibility measurements, thermogravimetric analysis and scanning electron microscopy. The results reveal that the bidentate ligands form complexes having octahedral geometry around Co2+ and Ni2+ metal ions while the geometry around Cu2+ and Zn2+ metal ions is four‐coordinated. The geometries of newly synthesized Schiff bases and their metal complexes were fully optimized in Gaussian 09 using 6–31 + g(d,p) basis set. Fluorescence quenching data reveal that Zn(II) and Cu(II) complexes bind more strongly to bovine serum albumin in comparison to Co(II) and Ni(II) complexes. The ligands and their complexes were evaluated for in vitro antibacterial activity against Escherichia coli ATCC 25922 (Gram negative) and Staphylococcus aureus ATCC 29213 (Gram positive) and cytotoxicity against lever hepatocellular cell line HepG2.  相似文献   

13.
Complexes of general formula, [M(isa-sme)2] · n(solvate) [M = Ni2+, Cu2+, Zn2+, Cd2+; isa-sme = monoanionic form of the Schiff base formed by condensation of isatin with S-methyldithiocarbazate; n = 1 or 1.5; solvate = MeCN, DMSO, MeOH or H2O] have been synthesized and characterized by a variety of physicochemical techniques. An X-ray crystallographic structure determination of the [Ni(isa-sme)2] · MeCN complex reveals a six-coordinate, distorted octahedral geometry. The two uninegatively charged, tridentate, Schiff base ligands are coordinated to the nickel(II) ion meridionally via the amide O-atoms, the azomethine N-atoms and the thiolate S-atoms. By contrast, the crystal structure of [Zn(isa-sme)2] · MeOH shows a four-coordinate distorted tetrahedral geometry. The two dithiocarbazate ligands are coordinated as NS bidentate chelates with the amide O-atom not coordinated. The structure of the copper(II) complex [Cu(isa-sme)2] · DMSO is complicated and comprises two different complexes in the asymmetric unit, one four- and the other five-coordinate. The four-coordinate copper(II) has a distorted (flattened) tetrahedral geometry as seen in the Zn(II) analogue whereas the five-coordinate copper(II) has a distorted square-pyramidal geometry with one ligand coordinated to the copper(II) ion as a tridentate (NSO) ligand and the other coordinated as a bidentate NS chelate. EPR spectroscopy indicates that in solution only one form is present, that being a distorted tetrahedral complex.  相似文献   

14.
New palladium(II) complexes, [Pd(PPh3)L] ( 2 ) and [Pd(AsPh3)L] ( 3 ), were synthesized using 4‐hydroxybenzoic acid (3‐ethoxy‐2‐hydroxybenzylidene)hydrazide ( 1 ) ligand (H2L), and characterized using various physicochemical techniques. The molecular structures of 2 and 3 were determined using single‐crystal X‐ray diffraction, which reveals a square planar geometry around the palladium(II) metal ion. In vitro DNA binding studies were conducted using UV–visible absorption spectroscopy, emission spectroscopy, cyclic voltammetry and viscosity measurements, which suggest that the metal complexes act as efficient DNA binders. The interaction of ligand H2L and complexes 2 and 3 with bovine serum albumin (BSA) was investigated using UV–visible and fluorescence spectroscopies. Absorption and emission spectral studies indicate that complexes 2 and 3 interact with BSA protein more strongly than the parent ligand. The free radical scavenging potential of all the synthesised compounds ( 1 – 3 ) was also investigated under in vitro conditions. In addition, the in vitro cytotoxicity of the complexes to tumour cells lines (HeLa and MCF‐7) was examined using the MTT assay method.  相似文献   

15.
Complexes CuL3Cl2, PdL2Cl2 and PtL2Cl2, where L is a novel ligand from the series of 2-substituted 5-aminotetrazoles, namely 5-amino-2-tert-butyltetrazole (1), have been synthesized by the reaction of metal(II) chlorides with 1 and characterized by IR spectroscopy, thermal and X-ray analyses. The crystallographic structural analysis of these complexes revealed that 1 acts as a monodentate ligand coordinated to the metal via endocyclic N4 atom. Platinum complex demonstrates promising cytotoxicity against human cervical carcinoma cells with IC50 value average between those of cisplatin and carboplatin.  相似文献   

16.
New Schiff bases, N,N′-bis(salicylidene)-4-aminobenzylamine (H2L1), N,N′-bis(3-methoxysalicylidene)-4-aminobenzylamine (H2L2), and N,N′-bis(4-hydroxysalicylidene)-4-aminobenzylamine (H2L3), with their nickel(II), cobalt(II), and copper(II) complexes have been synthesized and characterized by elemental analyses, electronic absorption, FT-IR, magnetic susceptibility, and conductance measurements. For the ligands, 1H and 13C NMR and mass spectra were obtained. The tetradentate ligands coordinate to the metal ions through the phenolic oxygen and azomethine nitrogens. The keto-enol tautomeric forms of the Schiff bases H2L1, H2L2, and H2L3 have been investigated in polar and apolar solvents. All compounds were non-electrolytes in DMSO (~10?3 M) according to the conductance measurements. Antimicrobial activities of the Schiff bases and their complexes have been tested against Acinobacter baumannii, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus megaterium, Corynebacterium xerosis, Staphylococcus aureus, Escherichia coli, Candida albicans, Rhodotorula rubra, and Kluyveromyces marxianus by the disc diffusion method; biological activity increases on complexation.  相似文献   

17.
A chiral Schiff base complex, bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato) cobalt(II) was prepared newly and characterized to be a distorted tetrahedral trans-[CoN2O2] coordination geometry. Organic/inorganic hybrid materials containing the related cobalt(II), nickel(II), copper(II), and zinc(II) complexes and photochromic azobenzene in polymethylmethacrylate (PMMA) cast films were assembled for comparison of their flexibility and molecular arrangement in the photofunctional medium. Characterization of each component and hybrid materials was carried out by means of absorption and CD spectra and thermal analysis (TG–DTA and DSC). Moreover, we have attempted to observe changes of conformation and/or molecular arrangement of the complexes or azobenzene induced by cistrans photoisomerization of azobenzene after alternate irradiation of polarized UV and visible light. Gradual increase of optical anisotropy was observed for all the hybrid materials regardless of flexibility of Schiff base complexes, and the degree of dichroism and weak intermolecular interactions were discussed based on polarized absorption electronic spectra.  相似文献   

18.
A novel tetradentate dianionic Schiff base ligand, N ,N ′‐bis(2‐carboxyphenylimine)‐2,5‐thiophenedicarboxaldhyde (H2L) and some first row d‐transition metal chelates (Co(II), Cu(II), Ni(II) and Zn(II)) were synthesized and characterized using various physicochemical and spectroscopic methods. The spectroscopic data suggested that the parent Schiff base ligand coordinates through both deprotonated carboxylic oxygen and imine nitrogen atoms. The free Schiff base and its metal chelates were screened for their antimicrobial activities for various pathogenic bacteria and fungi using the agar well diffusion method. The antibacterial and antifungal activities of all the newly synthesized compounds are significant compared to the standard drugs ciprofloxacin and nystatin. The antioxidant activities of the compounds were determined by reduction of 1,1‐diphenyl‐2‐picrylhydrazyl and compared with that of vitamin C as a standard. DNA binding ability of the novel Schiff base and its complexes was investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and thermal denaturation. The obtained results clearly demonstrate that the binding affinity with calf thymus DNA follows the order: Cu(II) complex > Ni(II) complex > Zn(II) complex > Co(II) complex >H2L. Furthermore, the DNA cleavage activity of the newly synthesized ligand and its metal complexes was investigated using supercoiled plasmid DNA (pUC18) gel electrophoresis.  相似文献   

19.
A unique hexanuclear zinc(II) ( 1 ) and two mononuclear copper(II) ( 2 and 3 ) complexes anchored with imino phenol ligand HL 1 and HL 2 were synthesized with good yield and purity (where HL 1  = 4‐tert‐butyl‐2,6‐bis((mesitylimino)methylphenol and HL 2   =  5‐tert‐butyl‐2‐hydroxy‐3‐((mesitylimino)methyl)benzaldehyde). These complexes were characterized by utilizing various spectroscopic protocols like NMR, FTIR, UV as well as ESI‐Mass spectrometry, elemental analysis and single crystal X‐ray diffraction studies. Their potential to bind calf thymus DNA (CT‐DNA) was tested utilizing different techniques such as UV–visible and fluorescence spectroscopy. The experiment implies that they interact with CT‐DNA via non‐intercalative mode with moderate capabilities (Kb ~ 104 M?1). On the other hand, these complexes have high capabilities to quench the fluorescence of bovine serum albumin (BSA) following the static pathway. In addition, they are active catalysts for the oxidation reaction of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to 3,5‐di‐tert‐butylquinone (3,5‐DTBQ) under aerobic condition. From the recorded EPR signals of all complexes, it has been concluded that the oxidation reaction proceeds via ligand oriented radical pathway instead of metal based redox participation. Kinetic studies using 1 – 3 indicate that it follows Michaelis–Menten type of equation with moderate to high turnover number (kcat). Apart from these aspects, complexes 1 – 3 were screened for their cytotoxic behavior towards HeLa cells (human cervical carcinoma) and found quite active with comparable IC50 values to cisplatin.  相似文献   

20.
Nickel(II) and palladium(II) form neutral 1?:?2 chelates with aromatic thiohydrazides, for example. thiobenzhydrazide, o-hydroxythiobenzhydrazide, furan-2-thiohydrazide, and thiophen-2-thiohydrazide. All the compounds are diamagnetic and have been characterized by elemental analysis and spectroscopic methods. o-Hydroxythiobenzhydrazido complexes of nickel(II) and palladium(II) were crystallized from DMSO and their structures were solved by X-ray diffraction. The complexes are isostructural with planar structures. Metal ion is linked to two identical deprotonated ligands through trans hydrazinic nitrogen and sulfur. Hydrogen of OH is involved in intramolecular hydrogen-bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号