首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximately global Pd and Pd94Cu6 alloy nano catalysts of average diameter 10.5 and 5.9 nm respectively, have been synthesized hydrothermally by wet chemical reduction and co-reduction methods without addition of any capping agent. X-ray diffraction and various microscopic studies are used to characterize the crystal phase and the morphology of the catalysts. Non-enzymatic amperometric glucose sensors based on these synthesized catalyst materials are tested and compared in alkali at different potentials by cyclic voltammetry and chronoamperometry. The sensors characterized by fixed potential chronoamperometry are found to be sufficiently sensitive to glucose at different negative potentials like −0.65 V, −0.40 V, −0.10 V with respect to Hg/HgO electrode (E0≈0.1 V), where the reactions of glucose oxidation are different. The sensor constructed with Pd94Cu6 nanocatalyst shows an outstanding sensitivity of 10.1 mA cm−2 mM−1 which is considerably higher than that constructed with similarly synthesized Pd nanoparticles at any potential and that found in the literature of Pd based glucose sensors. The lower detection limit and response time obtained with Pd94Cu6 nanoparticles are 10 μM and 3 s respectively. These sensors also exhibit high specificity to glucose and significant anti-interference property against some common species like ascorbic acid (AA), uric acid (UA) and some monosaccharides whose interfering effects are found to decrease with decrease of potential of glucose oxidation. The electrocatalytic ability of the synthesized Pd and Pd94Cu6 nanoparticles toward glucose oxidation has also found promising in blood sample at different potentials.  相似文献   

2.
采用共沉淀法合成了镍铝水滑石(NiAl-LDH),将NiAl-LDH与聚苯乙烯磺酸钠(PSS)通过层层自组装法构筑了PSS/NiAl-LDH多层膜电极,并将其用于葡萄糖分析。X射线衍射光谱、红外光谱和SEM结果表明:共沉淀法合成的NiAl-LDH具有典型的水滑石特征峰及形貌。紫外-可见光谱表明:NiAl-LDH可与PSS均匀有效地组装构筑多层膜。电化学研究表明:NiAl-LDH修饰电极能有效地催化氧化葡萄糖。该传感器对葡萄糖在5.0×10-7~6.6×10-4 mol/L范围内呈良好的线性响应,灵敏度为8.9×10-4 A?L?mol-1,检出限(S/N=3)为2.8×10-7 mol/L。  相似文献   

3.
A glassy carbon electrode has been coated by electrodeposition with a thin film of cobalt based layered double hydroxide (LDH) and used as a pH sensor. The developed electrode displays a linear super‐Nernstian response (?76.2±0.6 mV/pH) in the pH range between 2 and 14 and it is particularly suitable to operate in strongly alkaline solution. The reproducibility of the sensor construction is good with a relative standard deviation of the calibration curve slopes of±2.5 % (n=4). The electrode has a response time comparable to that exhibited by commercial glass electrodes in the pH range examined and is not affected by interference from the most common anions and cations.  相似文献   

4.
稀土离子La~(3+)掺杂的NiCo层状双金属氢氧化物纳米片具有高的超级电容器性能,比容量达到1115 F/g(1A/g)、倍率性能为517 F/g(30 A/g)。研究表明,La~(3+)离子掺杂不改变NiCo层状双金属氢氧化物晶体结构,但会显著影响其电子和离子传导特性,从而改变其电化学性能。根据离子电负性标度,La~(3+)(1.327)和Co~(2+)(1.377)离子的电负性值最接近,掺杂La~(3+)会优先取代Co~(2+)离子位置。由于La~(3+)离子的尺寸作用(106 pm),使得最优掺杂比例较小仅为0.26%,电化学结果表明较少的La~(3+)掺杂比例依然会显著调节NiCo层状双金属氢氧化物的电子/离子输运性质。  相似文献   

5.
电解水是一种常用的制氢方法,但高能耗的阳极析氧反应(OER)阻碍了其应用。尿素氧化反应(UOR)具有较低的热力学电势,是最有前景的OER替代反应之一。过渡金属基水滑石具有独特的层状结构和层间阴离子可交换等优点,被认为是性能优异的UOR催化剂,然而目前大多数研究主要聚焦于后过渡金属元素。该研究通过一步法制备了具有前/后过渡金属的CoV-LDHs纳米片。与相同方法制备的Co(OH)2相比,CoV-LDHs纳米片具有以下优点:1)纳米片结构有利于暴露更多的活性位点。2) V的引入增强了CoV-LDHs的亲水性,提高了其本征电催化动力学。3) Co (3d74s2)和V (3d34s2)之间的d-电子补偿效应有利于促进尿素的吸附。因此,CoV-LDHs仅需要1.52 V (vs. RHE) 就可以达到10 mA∙cm−2的电流密度,比Co(OH)2低了70 mV,同时CoV-LDHs较低的塔菲尔斜率表明了其较快的反应动力学。此外,CoV-LDHs在连续反应10 h后,驱动电位几乎没有增加,表明其具有良好的稳定性。该研究结果不仅证明了前/后过渡金属之间的d-电子补偿效应可以提高UOR催化性能,还为设计高效的UOR催化剂提供了可行的途径。  相似文献   

6.
As a family of two-dimensional functional materials, layered double hydroxides(LDHs) have the characteristics of adjustable lamellar element type and proportion, variable interlamellar anion, controllable particle size and thickness, providing a robust platform for photo/electro/thermal-catalysis. With the continuous progress of materials science, the synthesis of LDHs is becoming more and more refined. Herein, to achieve the fine preparation of LDHs materials, especailly for the no-chemical/material researchers, we successfully assembled the automatic synthesis device and wrote corresponding computer software to control this device, and the automatic synthesis of bulk and monolayer LDHs nanosheets on a laboratory scale can be realized. This work paves a new labor-saving way for the fine synthesis of LDHs nanostructures, further improving the development of LDHs-based materials.  相似文献   

7.
A novel electrochemical non-enzymatic glucose sensor based on three-dimensional Au/MXene nanocomposites was developed. MXenes were prepared using the mild etched method, and the porous foam of Au nanoparticles was combined with the MXene by means of in situ synthesis. By controlling the mass of MXene in the synthesis process, porous foam with Au nanoparticles was obtained. The three-dimensional foam structure of nanoparticles was confirmed by scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy were used to study the electrochemical performance of the Au/MXene nanocomposites. The Au/MXene nanocomposites acted as a fast redox probe for non-enzymatic glucose oxidation and showed good performance, including a high sensitivity of 22.45 μA\begin{document}$\cdot$\end{document}(mmol/L)\begin{document}$^{-1}$\end{document}\begin{document}$\cdot$\end{document}cm\begin{document}$^{-1}$\end{document} and a wide linear range of 1-12 mmol/L. Studies have shown that MXene as a catalyst-supported material is beneficial to enhance the conductivity of electrons and increase the loading rate of the catalyst materials. The foam structure with Au nanoparticles can provide a larger surface area, increase the contact area with the molecule in the catalytic reaction, and enhance the electrochemical reaction signal. In summary, this study shows that Au/MXene nanoparticles have the potential to be used in non-enzymatic glucose sensors.  相似文献   

8.
聚丙烯/层状双氢氧化物纳米复合材料是近年来开发的新型聚合物基复合材料,具有与纯聚合物基体不同的结晶行为,而且表现出优异的机械力学性能、耐热性能、阻燃性能和耐紫外线功能等,有着广泛的应用前景。本文首先对层状双氢氧化物的结构、组成与制备方法进行简要介绍,然后重点阐述了聚丙烯/层状双氢氧化物纳米复合材料的制备、分散结构表征、结晶行为以及力学和热学等性能方面的研究进展,最后对其应用前景进行展望。  相似文献   

9.
Layered double hydroxides (LDHs), also called “anionic clays”, have received considerable attention due to their technological importance in catalysis, adsorption, optics, nanocomposite engineering materials and medical science1-5. LDHs are layered mate…  相似文献   

10.
CuO nanospheres, synthesized by a simple one‐step hydrothermal method, have been applied to modify the glassy carbon (GC) electrode for sensitive nonenzymatic glucose detection. The CuO nanospheres modified electrode, compared to the Nafion modified GC electrode, exhibits an enhanced electrocatalytic property for direct glucose oxidation and shows a fast response and a high sensitivity for the amperometric detection of glucose. It has been determined that the dissolved oxygen is not involved in glucose oxidation and the high concentration of NaCl does not poison the electrode. These results also indicate that CuO nanospheres have great potential application in electrochemical detection.  相似文献   

11.
双(羟基)金属复合氧化物的表面改性   总被引:10,自引:0,他引:10  
水滑石;硬脂酸;湿法表面改性;双(羟基)金属复合氧化物的表面改性  相似文献   

12.
Mg-Al-NO_3层状双氢氧化物的制备及性能研究   总被引:7,自引:0,他引:7  
制备了带正电荷的Mg-Al-NO_3层状双氢氧化物(LDH),并对其组成、形貌、 电性能、离子交换性能等各种性质进行了表征。实验结果表明,所制备的正电纳米 颗粒具有可调控的层间自由空间。该方法为进一步研究聚合物/纳米复合材料提供 了一个合成前驱体的方法。  相似文献   

13.
利用多巴胺易于在电极表面发生自聚反应,且聚多巴胺膜中富含邻苯二酚等反应性基团,可通过二次反应实现电极表面的进一步功能化修饰的特点,在玻碳电极(GCE)表面,将多巴胺自聚膜(PDA)与铜微粒(Cu)进行层-层自组装,构建了无酶葡萄糖电化学传感器(GCE/(PDA/ Cu) n )。传感器的灵敏度可通过控制多层膜的组装层数进行调控。采用紫外-可见光谱跟踪表征了多层膜的组装过程,结果表明,多层膜的生长是逐步且均匀的过程。采用循环伏安法和电流-时间曲线法研究了修饰电极对葡萄糖的电催化氧化性能。对于GCE/(PDA/ Cu)4,检测葡萄糖的线性范围为0.5~9.0 mmol/ L,检出限为5.8μmol/ L(S/ N=3)。本传感器具有良好的重现性、稳定性和较强的抗干扰能力。将本传感器用于血清中葡萄糖的测定,结果令人满意。  相似文献   

14.
The fabrication of a highly sensitive amperometric glucose biosensor based on silver nanowires (AgNWs) is presented. The electrochemical behavior of glassy carbon electrode modified by Ag NWs exhibits remarkable catalytic performance towards hydrogen peroxide (H2O2) and glucose detection. The biosensor could detect glucose in the linear range from 0.005 mM to 10 mM, with a detection limit of 50 µM (S/N=3). The glucose biosensor shows high and reproducible sensitivity of 175.49 µA cm?2 mM and good stability. In addition, the biosensor exhibits a good anti‐interference ability and favorable stability over relatively long‐term storage (more than 21 days).  相似文献   

15.
Colloidal nanosheets of nickel–manganese layered double hydroxides (LDHs) have been synthesized in high yields through a facile reverse micelle method with xylene as an oil phase and oleylamine as a surfactant. Electron microscopy studies of the product revealed the formation of colloidal nanoplatelets with sizes of 50–150 nm, and X‐ray diffraction, energy dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy studies showed that the Ni–Mn LDH nanosheets had a hydrotalcite‐like structure with a formula of [Ni3Mn(OH)8](Cl?) ? n H2O. We found that the presence of both Ni and Mn precursors was required for the growth of Ni‐Mn LDH nanosheets. As pseudocapacitors, the Ni–Mn LDH nanosheets exhibited much higher specific capacitance than unitary nickel hydroxides and manganese oxides.  相似文献   

16.
Layer double hydroxide (LDH) is well known for its ability to intercalate anionic compounds. Most popular LDH is prepared only conventionally with bivalent and trivalent cations. In this study, Co-Ti LDH consisting of bivalent and tetravalent cations was prepared and characterized by chemical analysis, X-ray diffraction, IR spectra, thermal analysis and Scanning Electron Microscope (SEM). The experimental results indicate that the ageing procedure plays a vital role in the formation of Co-Ti LDH. The insertion of a cyanate anion into LDH was confirmed by chemical analysis and IR spectra. XRD patterns of the prepared LDH (Co-Ti-CNO) showed that the interlayer spacing of the LDH was 0.79 nm. The spacing was similar to that of usual LDH in which chloride or bromide anion is the guest. SEM images show that the morphology of Co-Ti LDH was a plate-like structure or a fibrous structure depending on the preparation conditions.This revised version was published online in July 2005 with a corrected issue number.  相似文献   

17.
The oxygen evolution reaction (OER) is involved in various renewable energy systems, such as water‐splitting cells and metal–air batteries. Ni‐Fe layered double hydroxides (LDHs) have been reported as promising OER electrocatalysts in alkaline electrolytes. The rational design of advanced nanostructures for Ni‐Fe LDHs is highly desirable to optimize their electrocatalytic performance. Herein, we report a facile self‐templated strategy for the synthesis of novel hierarchical hollow nanoprisms composed of ultrathin Ni‐Fe LDH nanosheets. Tetragonal nanoprisms of nickel precursors were first synthesized as the self‐sacrificing template. Afterwards, these Ni precursors were consumed during the hydrolysis of iron(II) sulfate for the simultaneous growth of a layer of Ni‐Fe LDH nanosheets on the surface. The resultant Ni‐Fe LDH hollow prisms with large surface areas manifest high electrocatalytic activity towards the OER with low overpotential, small Tafel slope, and remarkable stability.  相似文献   

18.
Hydrazine (N2H4) is considered as one of the most potential energy storage materials in liquid fuel cells, as it contains high energy and power density, and the high-efficiency oxidation of N2H4 in fuel cells has drawn great attention. However, the most used catalysts are expensive noble metal catalysts, thus the development of highly efficient non-noble metal catalysts is crucial to reduce the cost of hydrazine oxidation in practical industry. Herein, we synthesized a series of CoFe-layered double hydroxides (CoFe-LDHs) intercalated with different anions via a simple one-step co-precipitation method for the electrooxidation of hydrazine. Through altering the intercalated anions of CoFe-LDHs, the defects and the electronic structure can be well controlled, and the catalytic performance for the electrooxidation of hydrazine were well promoted by using NO3 intercalated into CoFe-LDH compared with other anions (like Cl, BO33−, CO32−). This work developed a series of hydrazine electrooxidation catalysts and established the relationship between the intercalated anions, the fine structure of the catalyst and the electrocatalytic performance.  相似文献   

19.
采用共沉淀法合成了镍铝水滑石(NiAl - LDH),将NiAl - LDH与聚苯乙烯磺酸钠(PSS)通过层层自组装法构筑了PSS/NiAl - LDH多层膜电极,并将其用于葡萄糖分析.X射线衍射光谱、红外光谱和SEM结果表明:共沉淀法合成的NiAl -LDH具有典型的水滑石特征峰及形貌.紫外-可见光谱表明:NiAl - LDH可与PSS均匀有效地组装构筑多层膜.电化学研究表明:NiAl - LDH修饰电极能有效地催化氧化葡萄糖.该传感器对葡萄糖在5.0×10-7~6.6×10-4 mol/L范围内呈良好的线性响应,灵敏度为8.9×10-4 A·L·mol -1,检出限(S/N=3)为2.8×10-7 mol/L.  相似文献   

20.
本文采用多孔聚碳酸酯(PC)模板在加热条件下通过溶液渗透和共沉淀制得了Al/Ni双氢氧化物纳米线,并将其修饰到玻碳电极制成无酶葡萄糖传感器。考察了该传感器在不同扫描速度时的循环伏安行为,比较了裸玻碳电极、不同修饰电极对响应电流的影响。在优化条件下进行葡萄糖检测,线性范围为2.0×10-5~1.3×10-3 mol/L,检出限可以达到5.0×10-6 mol/L。该方法快捷、灵敏、分析性能好,操作简便。可将其应用于血清中葡萄糖含量的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号