首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of original pyrimidinamine derivatives containing a biphenyl ether moiety were designed and synthesized. Their structures were confirmed by 1H NMR, MS, and elemental analyses. Their insecticidal activities against lepidopteran and hemiptera insects and acaricidal activities were tested. The results of bioassay demonstrated that 9k showed the best activity (LC50 = 2.08 mg/L) against Tetranychus urticae, which is comparable with the positive control, spirotetramat (LC50 = 2.27 mg/L), and 9g showed better activity (LC50 = 0.52 mg/L) against Aphis fabae than the positive control, imidacloprid (LC50 = 1.02 mg/L), and relatively good activity (LC50 = 2.49 mg/L) against T urticae. Their structure‐activity relationships indicated that both an ethyl group on the 4‐position of the pyrimidine ring and alkyl chain as a para‐substituent group of the benzene ring showed good biological activity.  相似文献   

2.
Photophysical, photostability, electrochemical and molecular‐orbital characteristics are analyzed for a set of stable dicyanobacteriochlorins that are promising photosensitizers for photodynamic therapy (PDT). The bacteriochlorins are the parent compound (BC), dicyano derivative (NC)2BC and corresponding zinc (NC)2BC‐Zn and palladium chelate (NC)2BC‐Pd. The order of PDT activity against HeLa human cancer cells in vitro is (NC)2BC‐Pd > (NC)2BC > (NC)2BC‐Zn ≈ BC. The near‐infrared absorption feature of each dicyanobacteriochlorin is bathochromically shifted 35–50 nm (748–763 nm) from that for BC (713 nm). Intersystem crossing to the PDT‐active triplet excited state is essentially quantitative for (NC)2BC‐Pd. Phosphorescence from (NC)2BC‐Pd occurs at 1122 nm (1.1 eV). This value and the measured ground‐state redox potentials fix the triplet excited‐state redox properties, which underpin PDT activity via Type‐1 (electron transfer) pathways. A perhaps counterintuitive (but readily explicable) result is that of the three dicyanobacteriochlorins, the photosensitizer with the shortest triplet lifetime (7 μs), (NC)2BC‐Pd has the highest activity. Photostabilities of the dicyanobacteriochlorins and other bacteriochlorins studied recently are investigated and discussed in terms of four phenomena: aggregation, reduction, oxidation and chemical reaction. Collectively, the results and analysis provide fundamental insights concerning the molecular design of PDT agents.  相似文献   

3.
Acetyltropic acid is an important synthetic intermediate for preparation of tropane alkaloid derivatives, which can be used as anticholinergic drugs, deliriants, and stimulants. In the present work, acetyltropic acid was successfully enantioseparated by countercurrent chromatography using sulfobutyl ether‐β‐cyclodextrin as chiral selector. A biphasic solvent system composed of n‐butyl acetate/n‐hexane/0.1 mol/L citrate buffer at pH = 2.2 containing 0.1 mol/L of sulfobutyl ether‐β‐cyclodextrin (7:3:10, v/v) was selected, which produced a suitable distribution ratio D= 1.14, D= 2.31 and a high enantioseparation factor α = 2.03. Baseline separation was achieved for preparative enantioseparation of 50 mg of racemic acetyltropic acid. A method for chiral analysis of acetyltropic acid by conventional reverse phase liquid chromatography with hydroxylpropyl‐β‐cyclodextrin as mobile phase additive was established, and formation constants of inclusion complex were determined. It was found that different substituted β‐cyclodextrin should be selected for enantioseparation of acetyltropic acid by countercurrent chromatography and reverse phase liquid chromatography.  相似文献   

4.
In this work, RuS2 and RuO2 nanoparticles loaded chitosan (Chitosan was extracted from Lobsters shells of Persian Gulf, IR. Iran) was prepared and characterized via FE‐SEM, EDS and FT‐IR analysis. FESEM showed the formation of spherical nanoparticles in size ranging of 20 to 100 mm. Subsequently, the role of these new materials as curcumin drug carrier and in vitro release of curcumin in simulated body fluid (SBF) solution (pH 7.4) were studied. RuS2‐NPs‐CS than to RuO2‐NPs‐CS showed higher drug loading efficiency (>91%) and rapid (<90 min) curcumin drug release in SBF solution. Also, antibacterial activity of RuS2‐NPs‐CS and RuO2‐NPs‐CS in presens and absence of Rosemary extracts against the gram negative bacteria Pseudomonas aeruginosa (PAO 1) was evaluated by detection of minimal inhibition concentration (MIC) and minimal bactericidal concentration (MBC). MIC of RuS2‐NPs‐CS, RuO2‐NPs‐CS and Rosemary extracts on Pseudomonas aeruginosa strains were found to be 50 mg/ml, 50 mg/ml and 1250 mg/ml, respectively. The synergistic effect of these materials for inhibition of PAO 1 growth showed that mixture of RuS2‐NPs‐CS and Rosemary extracts has a better efficiency than to other mixture materials.  相似文献   

5.
A rapid and sensitive gas chromatography with mass spectrometry method for the determination of venlafaxine in rat plasma has been developed and applied to a drug–drug interaction study of fluoxetine on pharmacokinetics of venlafaxine in rats. Rat plasma was spiked with 2% aqueous ammonia before subjected to preactivated C18 solid‐phase extraction columns and eluted with methanol. No endogenous interferences were observed under optimal condition. The calibration curve was linear (R 2 = 0.9994) in the range of 10–1000 ng/mL. The quantification limit of venlafaxine in rat plasma was 10 ng/mL. The accuracy was in the range of 85–110%, and the extraction recovery was no less than 50%. Both the intra‐ and interday precision were 5.0–10.7%. The concentration–time curve showed that plasma concentrations of the coadministration group (group B) were higher than that of single dose group (group A). Both values of C max (0.069 mg/L) and AUC0→∞ (0.291 mg h/L) in group B were statistically greater than that of C max (0.046 mg/L) and AUC0→∞ (0.181 mg·h/L) in group A (< 0.05). The results indicated that a significant effect of fluoxetine was shown on the pharmacokinetics of venlafaxine, suggesting that drug–drug interactions are of concern for the treatment of depression with the combined use of venlafaxine and fluoxetine.  相似文献   

6.
A cost-efficient kaolinite-cellulose/cobalt oxide green nanocomposite (Kao-Cel/Co3O4 NC) was successfully synthesized, and utilized as a promising material for removing Pb2+ and Cd2+ from aqueous solution. The fabricated nanocomposite has been characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy-energy dispersive X-ray, high-resolution transmission electron microscopy, and Brunauer-Emmett-Teller analysis. The batch methodology was exploited for optimization of process parameters and the optimized conditions were found to be adsorbent dosage (2.0 g/L), extraction time (50 min), initial concentration (60 mg/L), and initial solution pH (6). Kao-Cel/Co3O4 NC displayed excellent adsorption properties and achieved maximum saturation capacity (Qm) of 293.68 mg Pb2+/g and 267.85 mg Cd2+/g, with an equilibration time of 50 min at 323 K. The Langmuir model best expressed the isotherm data recommending the adsorption onto energetically homogeneous NC surface, while the compatibility of kinetics data with pseudo-second-order model revealed the dependency of adsorption rate on adsorption capacity, and probable involvement of chemisorption in the rate-controlling step. Electrostatic interaction and ion exchange mechanism were responsible for the uptake of Pb2+ and Cd2+ by Kao-Cel/Co3O4 NC as demonstrated by Fourier transform infrared spectroscopy and pH studies. Thermodynamic parameters confirmed the physical, spontaneous, and endothermic sequestration processes. Real water investigation specified that the present adsorbent could be effectively used for liquid phase decontamination of Pb2+ and Cd2+. The nanocomposite exhibited high reusability, which could be utilized efficiently for five runs with sustainable results. In summary, this study portrayed the present nanocomposite as an emerging material for the adsorption of heavy metal ions particularly Pb2+ and Cd2+.  相似文献   

7.
A series of novel imidazo[4,5‐b]pyridine derivatives were designed and synthesized. The structures of all the newly synthesized compounds were identified by spectroscopic data NMR, MS, and elemental analysis. Bioassay showed that the compounds exhibited potent fungicidal activities against Erysiphe graminis, Puccinia polysora, and so forth. Particularly, 2‐chloro‐5‐((5‐methoxy‐2‐(2‐(trifluoromethyl)phenyl)‐3H‐imidazo[4,5‐b]pyridin‐3‐yl)methyl)thiazole ( 9b ) displayed fungicidal potency against Ppolysora. Its EC50 value: 4.00 mg/L is comparable with that of tebuconazole. The structure–activity relationship for the target compounds is discussed.  相似文献   

8.
Two mononuclear ruthenium complexes ( 1 and 2 ) with aroyl/acylthiourea as an ancillary ligand of type, [(η6p‐cymene)RuCl(L‐N,S)], where [ L1  = 2,4‐dichloro‐N‐(o‐tolylcarbamothioyl)benzamide] and L2  = N‐(phenylcarbamothioyl)cyclohexanecarboxamide] were synthesized and well characterized. The single crystal X‐ray diffraction studies revealed the coordination mode and the geometry of the complexes. The two complexes adopted general piano‐stool (three‐legged) geometry with a novel coordination mode of aroyl/acylthiourea through amide N (anionic) and thiocarbonyl S (neutral). This type of monobasic bidentate coordination of the aroyl/acylthiourea ligand was witnessed the first time around the metal ion. The coordination of the complexes was well explained through geometric parameters and frontier molecular orbital parameter values computed at the B3LYP/SDD level. The synthesized complexes were also screened for their antibacterial, antifungal, antioxidant and in vitro antiproliferative activities. Complexes exhibited good antimicrobial agents against various pathogens. The antioxidant activity of the complex 2 has shown most potent activity with IC50 value of 48.55 ± 1.7 μM compared to the reference drug. In addition, the in vitro antiproliferative activity of the complex 2 showed excellent activity against HepG‐2 cell line with the IC50 value of 24.30 ± 1.20 μM which is close to Doxorubicin standard drug.  相似文献   

9.
Six complexes with chiral Schiff‐base ligands containing TPP+ groups, [VO L R,R/S,S](ClO4)2( 1 for RR, 2 for SS), [Ni L R,R/S,S](ClO4)2·C2H5OH ( 3 for RR, 4 for SS) and [CuLR,R/S,S](ClO4)2·CHCl3·CH3CH2OH ( 5 for RR, 6 for SS) ( L R,R/S,S = N,N′‐Bis{5‐[(triphenylphosphonium)‐methyl]salicylidine}‐(1R,2R/1S,2S)‐diphenylethane‐1,2‐diamine, were synthesized to serve as mitochondrion‐targeting anticancer drugs. The introduction of TPP+ group(s) might markedly influence the properties of complexes. Compounds 3 and 5 were structurally characterized by X‐ray crystallography. Complexes 1–6 could be moderate intercalating agents to CT‐DNA which is determined by several spectroscopy methods. DNA cleavage experiments revealed that all compounds could promote oxidative cleavage of pBR322 plasmid DNA in the presence of H2O2. MTT assay indicated 1–6 exhibited effective cytotoxicity on A549 and MCF‐7 cell lines. Notably, the IC50 values of 5 (1.24 ± 0.33 μM) or 6 (1.47 ± 0.52 μM) were approximately 9–11 fold lower than that of cisplatin (IC50 = 13.56 ± 0.88 μM) on A549 cells. 5 and 6 were picked for further study, which indicated that the cytotoxicity seems to result from multiple mechanisms of action, including effectively suppress the growth and proliferation of A549 cells, generation of reactive oxygen species, dissipation of mitochondrial membrane potential, cell cycle perturbation and apoptosis induction. Compounds 1–6 could highly accumulate in the mitochondria by means of ICP‐MS assay. This study demonstrates that 1–6 with mitochondrion‐targeting function could be efficient anticancer drugs.  相似文献   

10.
This work proposes an approach to the direct analysis of S‐adenosylhomocysteine (SAH) and the methylation index in blood using CE with UV detection (CE‐UV). After application of meglumine postinjection, we achieved SAH in‐capillary preconcentration in the HClO4 extracts of erythrocytes, which improved the detection limit (S/N = 3) of SAH up to 3 fmol or 180 nmol/L at the injection volume of 50 nL, taking into account the sample dilution rate. CE‐UV was carried out in 30 mM glycine and 45 mmol/L HCl (pH ~1.8) at 17 kV in a capillary 48 cm in length and 50 μm id. Accuracy of the technique was 101% and reproducibility was about 12%.  相似文献   

11.
A sensitive, specific and efficient high‐performance liquid chromatography/tandem mass spectrometry assay for the simultaneous determination of vinorelbine and its metabolite 4‐O‐deacetylvinorelbine in human and mouse plasma is presented. Heated electrospray ionization was applied followed by tandem mass spectrometry. A 50 µL plasma aliquot was protein precipitated with acetonitrile–methanol (1:1, v/v) containing the internal standard vinorelbine‐d3 and 20 µL volumes were injected onto the HPLC system. Separation was achieved on a 50 × 2.1 mm i.d. Xbridge C18 column using isocratic elution with 1 mm ammonium acetate–ammonia buffer pH 10.5–acetonitrile–methanol (28:12:60, v/v/v) at a flow rate of 0.4 mL/min. The HPLC run time was 5 min. The assay quantifies both vinorelbine and 4‐O‐deacetylvinorelbine from 0.1 to 100 ng/mL using sample volumes of only 50 µL. Mouse plasma samples can be quantified using calibration curves prepared in human plasma. Validation results demonstrate that vinorelbine and 4‐O‐deacetylvinorelbine can be accurately and precisely quantified in human and mouse plasma with the presented method. The assay is now in use to support (pre‐)clinical pharmacologic studies with vinorelbine in humans and mice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A simple, rapid, sensitive, and environmentally friendly method, based on modified dispersive liquid–liquid microextraction coupled with high‐performance liquid chromatography was developed for the simultaneous determination of five biogenic amines in fermented food samples. Biogenic amines were derivatized with 9‐fluorenylmethyl chloroformate, extracted by vortex‐assisted surfactant‐enhanced emulsification liquid–liquid microextraction, and then analyzed by high‐performance liquid chromatography. Five biogenic amine compounds were separated within 30 min using a C18 column and gradient elution with acetonitrile and 1% acetic acid. Factors influencing the derivatization and extraction efficiency such as type and volume of extraction solvent, type, and concentration of surfactant, pH, salt addition, and vortex time were optimized. Under the optimum conditions, the method provided the enrichment factors in the range of 161–553. Good linearity was obtained from 0.002–0.5 mg/L for cadaverine and tyramine, 0.003–1 mg/L for tryptamine and histamine, and 0.005–1 mg/L for spermidine with coefficient of determination (R2) > 0.992. The limits of detection ranged from 0.0010 to 0.0026 mg/L. The proposed method was successfully applied to analysis of biogenic amines in fermented foods such as fermented fish (plaa‐som), wine and beer where good recoveries were obtained in the range of 83.2–112.5%  相似文献   

13.
To obtain an effective compatibilizer for the blends of poly(L‐lactide) (PLLA) and poly(ε‐caprolactone) (PCL), the diblock copolymers PCL‐b‐PLLA with different ratios of PCL/PLLA (CL/LA) and different molecular weights (Mn) were synthesized by ring‐opening polymerization (ROP) of L‐lactide with monohydric poly(ε‐caprolactone) (PCL‐OH) as a macro‐initiator. These copolymers were melt blended with PLLA/PCL (80/20) blend at contents between 3.0 and 20 phr (parts per hundred resin), and the effects of added PCL‐b‐PLLA on the mechanical, morphological, rheological, and thermodynamic properties of the PLLA/PCL/PCL‐b‐PLLA blends were investigated. The compatibility between PLLA matrix and PCL phase was enhanced with decreasing in CL/LA ratios or increasing in Mn for the added PCL‐b‐PLLA. Moreover, the crystallinity of PLLA matrix increased because of the added compatibilizers. The PCL‐b‐PLLA with the ratio of CL/LA (50/50) and Mn ≥ 39.0 kg/mol were effective compatibilizers for PLLA/PCL blends. When the content of PCL‐b‐PLLA is greater than or equal to 5 phr, the elongations at break of the PLLA/PCL/PCL‐b‐PLLA blends all reached approximately 180%, about 25 times more than the pristine PLLA/PCL(80/20) blend.  相似文献   

14.
The phytochemical investigation of the MeOH extract from fruits of Kotschya strigosa using repeated normal and reversed‐phase column chromatography and Sephadex LH‐20 chromatography led to the isolation and characterization of a new isoflavanol, named kotstrigoisoflavanol ( 1 ), together with three known compounds, diosmetin ( 2 ), β‐sitosterol ( 3 ), and the 3‐Oβ‐d‐glucopyranoside of β‐sitosterol ( 4 ). The antioxidant activity of crude extract, 1, and 2 was determined using the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH˙) method. The crude extract (IC50 61.7 ± 0.2 μg/ml) and 2 (IC50 70.2 ± 0.1 μg/ml) showed moderate antioxidant activities, while 1 was weakly active (IC50 153.1 ± 0.1 μg/ml), as compared with the standard reference l ‐ascorbic acid (IC50 21.9 ± 0.0 μg/ml).  相似文献   

15.
A novel magnetic mesoporous silica material was synthesized and used as the sorbent for the magnetic solid‐phase microextraction of diazinon and malathion before their quantification by high‐performance liquid chromatography with UV detection. The sorbent was synthesized by a surfactant‐templated one‐pot sol–gel procedure using SiO2‐coated Fe3O4 as the magnetic support, cetyltrimethylammonium bromide as the template and tetraethyl orthosilicate as the silicon source. The characteristics of the prepared sorbent were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, and X‐ray diffraction. The sorbent exhibited a high maximum adsorption capacity of 19.2 and 9.4 mg/g for diazinon and malathion, respectively. The parameters affecting the microextraction were optimized by the MultiSimplex method. Under the optimized conditions, the calibration graphs were linear in the concentration ranges of 0.3–50.0 and 0.5–50 μg/L with the limits of detection of 0.09 and 0.14 μg/L for diazinon and malathion, respectively. The relative standard deviations (n = 5) at a concentration level of 10.0 μg/L of analytes were less than 2.5 and 4% for intra and interday, respectively. The developed method was successfully used for the determination of diazinon and malathion in apple, tomato, cucumber, tap water, and well water samples.  相似文献   

16.
A series of new isatin–mesalamine conjugates ( 9a – g ) were synthesized via conjugation of isatin ( 3a ) and its derivatives ( 3b – 3d , 4 , 5 , and 6 ) with mesalamine ( 7 ) by using chloroacetyl chloride as a bifunctional linker. Compounds 3a – 3d were prepared by employing Sandmeyer reaction. Compounds 4 , 5 , and 6 were obtained from isatin ( 3a ) via previously reported methods. The synthesized compounds were characterized by IR, mass, 1H NMR, and 13C NMR spectral techniques. Synthesized compounds ( 3a – d , 4 , 5 , 6 , and 9a – g ) were evaluated for in vitro antioxidant activity by DPPH assay method using ascorbic acid as standard. Hybrids 9b (IC50 = 368.6 ± 3.5 μM) and 9f (IC50 = 335.1 ± 2.9 μM) showed better antioxidant activity than its parent compounds such as 3a (IC50 = 556.8 ± 2.9 μM), 5 (IC50 = 511.9 ± 3.6 μM), and 7 (IC50 = 768.9 ± 2.7 μM). Acetic acid‐induced ulcerative colitis in rat model was chosen to examine the antioxidant potential of the synthesized hybrids ( 9b and 9f ) in the amelioration of ulcerative colitis. Colonic myeloperoxidase and malondialdehyde enzymes were used as biomarkers of anti‐ulcerative colitis activity. In the present study, hybrids 9b and 9f reduced the levels of colonic myeloperoxidase and malondialdehyde enzymes significantly (p < 0.05) when compared with control (colitic), at a dose (0.03 mM/12.5 mg/kg b.w. p.o.) (50%) less than that of its parent moieties mesalamine (0.16 mM/25 mg/kg) and isatin (0.16 mM/25 mg/kg). Thus, the molecular hybridization was proved to be significant in enhancing the activity of hybrids 9b and 9f by reducing the dose.  相似文献   

17.
A series of 2,3‐dimethyl‐4‐(1‐acyloxy)alkoxy‐6‐tert‐butyl‐8‐fluoroquinolines were synthesized by 4‐(tert‐butyl)aniline as the starting material via acylation, substitution, and hydrolysis, and their structures were characterized by 1H NMR, 13C NMR, and HRMS. The fungicidal activity showed that compounds 6c , 6e , and 6f had excellent activity against Sphoaerotheca fuliginea with EC50 values of 38.62, 6.77, and 50.35 mg/L, respectively. The results suggest that this chemotype of compounds warrant further studies as promising fungicide.  相似文献   

18.
This study describes the development of an analytical methodology based on the use of microchip electrophoresis (ME) devices integrated with capacitively coupled contactless conductivity detection (C4D) for the separation and detection of inorganic anions in post‐blast explosive residues. The best separation condition was achieved using a running buffer composed of 35 mmol/L lactic acid, 10 mmol/L histidine and 0.070 mmol/L cetyl(trimethyl ammonium) bromide. For C4D measurements, the highest sensitivity was obtained applying a 700 kHz sinusoidal wave with excitation voltage of 20 Vpp. The separation of Cl?, NO3?, NO2?, SO42?, ClO4? and ClO3? was performed within ca. 150 s with baseline resolution and efficiencies between 4.4 × 104 and 1.7 × 105 plates/m. The found limits of detection ranged between 2.5 and 9.5 μmol/L. Last, real samples of post‐blast explosive residues were analyzed on the ME‐C4D devices obtaining successfully the determination of Cl?, NO3? and SO42?. The achieved concentration values varied between 12.8–72.5 mg/L for Cl?, 1.7–293.1 mg/L for NO3? and 1.3–201.3 mg/L for SO42?. The data obtained using ME‐C4D devices were in good agreement with the concentrations found by ion chromatography. The approach reported herein has provided short analysis time, instrumental simplicity, good analytical performance and low cost. Furthermore, the ME‐C4D devices emerge as a powerful and portable analytical platform for on‐site analysis demonstrating to be a promising tool for the crime scene investigation.  相似文献   

19.
《Electrophoresis》2018,39(7):933-940
Graphene oxide functionalized silica microspheres (GO@SiO2) were synthesized based on condensation reaction between amino from aminosilica particles and carboxyl groups from GO. Reduction of GO@SiO2 with hydrazinium hydroxide generated graphene modified silica particles (G@SiO2). GO@SiO2 and G@SiO2 packed capillary columns for capillary electrochromatography were thereafter fabricated by pressure slurry packing with single‐particle frits. GO of 0.3 mg/mL in dispersion solution for GO@SiO2 synthesis was considered as a compromise between retaining and column efficiency whereas GO@SiO2 of 20 mg/mL in slurries for column packing was chosen for a homogenous and tight bed. Optimum mobile phases were acquired considering both electroosmotic flow and resolution at an applied voltage of −6 kV as the following: acetonitrile/phosphate buffer (10 mM, pH 7.0), 75:25 (v/v) for polycyclic aromatic hydrocarbons and 50:50 (v/v) for aromatic compounds. A comparison was made between electrochromatographic performances for three PAHs (naphthalene, fluorene and phenanthrene) and three aromatic compounds of various polarities (toluene, aniline and phenol) on bare aminosilica, GO@SiO2 and G@SiO2 packed columns, which proved the contribution of alone or combinational actions of solvophobic effect and π‐π electron stacking as well as hydrogen bonds to retaining behaviors by GO@SiO2 and G@SiO2. Well over‐run, over‐day and over‐column precisions (retention time: 0.3–1.4, 1.1–3.8 and 2.8–5.2%, respectively; peak area: 2.6–6.5, 4.8–8.3 and 6.5–12.6%, respectively) of GO@SiO2 packed columns were a powerful proof for good reproducibility. Analytical characteristics of GO@SiO2 packed capillary columns in CEC analysis of fresh water were evaluated with respect to linearity (R2 = 0.9961–0.9989) over the range 0.1 to 100 mg/L and detection limits of 9.5 for naphthalene, 12.6 for fluorene and 16.2 μg/L for phenanthrene. Further application to fresh water increased the visibility of the proposed material, where good spike recoveries in the range 89–96% were offered.  相似文献   

20.
The reaction of [(p‐cymene)RuCl2]2 and [Cp*MCl2]2 (M = Rh/Ir) with benzoyl (2‐pyrimidyl) thiourea (L1) and benzoyl (4‐picolyl) thiourea (L2) led to the formation of cationic complexes bearing formula [(arene) M (L1)к2 (N,S) Cl]+ and [(arene) M (L2)к2(N,S)Cl]+ [(arene) = p‐cymene, M = Ru, ( 1 , 4 ); Cp*, M = Rh ( 2 , 5 ) and Ir ( 3 , 6 )]. Precursor compounds reacted with benzoyl (6‐picolyl) thiourea (L3) affording neutral complexes having formula [(arene) M (L3)к1(S)Cl2] [arene = p‐cymene, M = Ru, ( 7 ); Cp*, M = Rh ( 8 ), Ir ( 9 )]. X‐ray studies revealed that the methyl substituent attached to the pyridine ring in ligands L2 and L3 affects its coordination mode. When methyl group is at the para position of the pyridine ring (L2), the ligand coordinated metal in a bidentate chelating N, S‐ mode whereas methyl group at ortho position (L3), it coordinated in a monodentate mode. Further the anti‐cancer studies of the thiourea derivatives and its complexes carried out against HCT‐116, HT‐29 (human colorectal cancer), Mia‐PaCa‐2 (human pancreatic cancer) and ARPE‐19 (non‐cancer retinal epithelium) cell lines showed that the thiourea ligands are inactive but upon complexation, the metal compounds displayed potent and selective activity against cancer cells in vitro. Iridium complexes were found to be more potent as compared to ruthenium and rhodium complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号