首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《中国化学会会志》2017,64(11):1326-1332
Different bismuth molybdate catalysts for the selective oxidation of propylene to acrolein were prepared by the sol–gel method, starting from bismuth nitrate, ammonium molybdate, and citric acid. The influence of pH value and theoretical molar Bi/Mo atomic ratio on the complexation and gelation is surveyed using IR spectroscopy, X‐ray diffraction, and BET. Their catalytic activities for the conversion propylene to acrolein are examined.  相似文献   

2.
Water pollution by polychlorinated aromatic hydrocarbons has always been a global issue. In this work, we reported a synthesis of supported palladium catalysts Pd/C, Pd/CeO2, Pd/SBA‐15, Pd/ZrO2,Pd/SiO2, and Pd/Al2O3 as well as their catalytic activities on hydrodechlorination (HDC) of 1,2,4,5‐tetrachlorobenzene (TeCB). These Pd catalysts were characterized by Brunauer‐Emmett‐Teller (BET) specific surface area, Transmission electron microscopy (TEM), X‐ray diffraction (XRD), energy Dispersive X‐ray Fluorescence (EDXRF), CO‐chemisorption, and H2‐temperature programmed reduction (H2‐TPR) analysis. Pd/C, Pd/CeO2 and Pd/SBA‐15 catalysts showed relatively high catalytic activities. The catalytic activities were associated with dispersion of Pd, metal surface area, and reaction temperature, etc.  相似文献   

3.
《中国化学会会志》2018,65(6):760-770
In this paper, the gas‐phase fluorination of hexachlorobutadiene (HCBD) to synthesize 1,2‐dichlorotetrafluorocyclobutene (DTB) was carried out over a series of Cr/M/Zn catalysts (M = Ni, Co, Cu, In, Al). The influence of prefluorination by different fluorinating agents (HF, 95%HF + 5%Cl2, 95%HF + 5%O2, CF2O, CF2Cl2) on catalytic performance of Cr/Co/Zn sample was also investigated. The addition of prompters to the Cr/Zn catalyst improved remarkably its catalytic properties. The Cr/Ni/Zn catalyst exhibited the best catalytic activity (1.318 mmol/h/g) at 390 °C and the Cr/Co/Zn catalyst showed the best DTB selectivity (42.5%) at 350 °C. Compared to that of gaseous HF, the catalytic performance of the Cr/Co/Zn catalyst after treatment by HF + O2 and CF2O increased considerably, whereas for HF + Cl2 and CF2Cl2 it showed little effect. In order to identify the different species (Cr─O, Cr─F, CrO xF y) present on catalysts’ surface and determine their exact role, these catalysts before and after the reaction were characterized by X‐ray photoelectron spectroscopy. It was found that the concentration of the various species was responsible for the activity and lifetime of catalysts. Moreover, a possible reaction route is proposed based upon the product distribution. The most feasible formation pathway of DTB proceeded via the cyclization of C4Cl4F2 or C4Cl3F3 to yield c‐C4Cl4F2 and c‐C4Cl3F3 followed by further the Cl/F exchange.  相似文献   

4.
Ferrocene tethered N‐heterocyclic carbene‐copper complex anchored on graphene ([GrFemImi]NHC@Cu complex) has been synthesized by covalent grafting of ferrocenyl ionic liquid in the matrix of graphene followed by metallation with copper (I) iodide. The [GrFemImi]NHC@Cu complex has been characterized by fourier transform infrared (FT‐IR), fourier transform Raman (FT‐Raman), CP‐MAS 13C NMR spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), energy dispersive X‐ray (EDX) analysis, X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analysis and X‐ray diffractometer (XRD) analysis. This novel complex served as a robust heterogeneous catalyst for the synthesis of bioactive N‐aryl sulfonamides from variety of aryl boronic acids and sulfonyl azides in ethanol by Chan‐Lam coupling. Recyclability experiments were executed successfully for six consecutive runs.  相似文献   

5.
Phillips catalyst is one of the most significant industrial ethylene polymerization catalysts. Chemical modifications have been carried out to tune the Phillips catalyst performance and improve the polyethylene properties. After the modification of the catalyst by fluorine, the polyethylene product with higher molecular weight (MW) and narrower molecular weight distribution (MWD) is suitable for producing automobile fuel tanks. Vanadium containing Phillips catalyst enhances α‐olefin incorporation and MW regulation. In present work, fluorine modified and unmodified chromium–vanadium (Cr–V) bimetallic catalysts are prepared and explored. Compared with the fluorine‐free catalyst, the activities of F‐modified bimetallic catalysts slightly decrease with the increasing MW of the product and the hydrogen response increases slightly. Due to the synergistic effect of the chromium, vanadium and fluorine on the silica gel support, the short‐chain branch distribution (SCBD) of copolymers from F‐modified Cr–V bimetallic catalyst (Cr–V–F)600 is more beneficial than that of Cr–V bimetallic catalyst (Cr–V)600 and F‐modified Cr–V bimetallic catalyst (Cr–V–F)500. The fluorination of Cr–V bimetallic catalysts has not only preserved the high polyethylene activity of bimetallic active sites but also produced the advantage of the high MW ability from fluorine.

  相似文献   


6.
The silica‐PI hybrid self‐standing films with ordered mesoporous structure have been prepared by using dibenzoyl‐L ‐tartaric acid (L ‐DBTA) as non‐surfactant template under mild sol–gel route. Polyimide matrix was obtained from polyamic acid (PAA) via thermal imidization process and the template was removed in this process. The PI‐based hybrid film with 20 wt% SiO2 obtained from DBTA presented the ordered mesoporous channels with average pore size of about 2.0 nm and BET surface area of 1167 m2/g. FTIR and SEM studies indicated that the hydrogen bond interaction between the carboxylic groups of DBTA and benzamide bonds of PAA made the PAA possibly participate in the assembly process of the aggregates of the non‐surfactant template molecules. The mechanical, thermal and some physical properties of these hybrid films materials were also characterized. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In this work the copper oxide nanoparticles simultaneous with sol–gel‐derived carbon ceramic production were synthesized and doped in ceramic by microwave irradiation in a few minutes without using any catalyst and organic solvent. The ceramic composition was characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Fourier transforms infrared (FT‐IR), and its surface morphology was investigated by scanning electron microscopy (SEM). The proposed ceramic with detection limit of 0.1 µM, was used for electrocatalytic determination of adenine at potential about 700 mV lower than its usual oxidation potential.  相似文献   

8.
Supported nickel has been used in a wide range of applications for industrial reactions, such as steam reforming, hydrogenation and methanation. In this work, nickel aluminate was prepared by the sol–gel process using alumatrane as the alkoxide precursor, directly synthesized from the reaction of inexpensive and available compounds, aluminum hydroxide and TIS (triisopropanolamine) via the oxide one pot synthesis (OOPS) process. Various conditions of the sol–gel process, such as pH, calcination temperature, hydrolysis ratio and ratio of nickel to aluminum, were studied. All samples were characterized using FTIR, TGA, XRD, TPR, DR‐UV and BET. The BET surface area was in the range of 340–450 m2/g at the calcination temperature of 500 °C with a mesoporous pore size distribution. Catalyst activity testing in CO oxidation reaction depended on Ni:Al ratio and calcination temperature. Higher activity was obtained from higher Ni content and lower calcination temperature. In addition, catalysts prepared using alumatrane precursor had higher percentage conversion than those prepared using aluminum hydroxide precursor. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Nanocellulose (NC) materials have some unique properties, which make them attractive as organic or inorganic supports for catalytic applications. Nanocatalysts with diameters of less than 100 nm are difficult to separate from the reaction mixture, therefore, magnetic nanoparticles (MNPs) were used as catalysts to overcome this problem. Fe3O4@NCs/BF0.2 as a green, bio‐based, eco‐friendly, and recyclable catalyst was synthesized and characterized using fourier‐transform infrared spectroscopy (FT‐IR), vibrating sample magnetometer (VSM), X‐ray diffraction (XRD), X‐ray fluorescence (XRF), Brunauer–Emmett–Teller (BET), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA) techniques. Fe3O4@NCs/BF0.2 was employed for the synthesis of 2,3‐dihydro‐1H‐perimidine derivatives via a reaction of 1,8‐diaminonaphthalene with various aldehydes at room temperature under solvent‐free conditions. The present procedure offers several advantages including a short reaction time, excellent yields, easy separation of catalyst, and environmental friendliness.  相似文献   

10.
Liquid phase hydrogenolysis of ethyl lactate to 1,2‐propanediol was performed over silica supporting cobalt catalysts prepared by two different methods: precipitation‐gel (PG) technique and deposition‐precipitation (DP) procedure. The cobalt species (Co3O4/cobalt phyllosilicate) present in the corresponding calcined PG and DP catalysts were different as a consequence of the preparation methods, and Co OH Co olation and Si O Co oxolation molecular mechanisms were employed to elucidate the chemical phenomena during the different preparation procedures. In addition, the texture (BET), reduction behavior (TPR and in‐situ XRD), surface dispersion and state of cobalt species (XPS), and catalytic performance differ greatly between the samples. Because of small particle size, high dispersion of cobalt species and facile reducibility, the Co/SiO2 catalyst prepared by precipitation‐gel method presented a much higher activity than the catalyst prepared by deposition‐precipitation method. Metallic cobalt is assumed to be the catalytically active site for the hydrogenolysis reaction according to the catalytic results of both cobalt samples reduced at different temperatures and the structure changes after reaction.  相似文献   

11.
The reaction between secondary amines, benzoyl isothiocyanate, and dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) in the presence of silica gel (SiO2) led to alkyl 2‐(dialkylamino)‐4‐phenylthiazole‐5‐carboxylates in fairly high yields. The structures of the products were confirmed by their IR, 1H‐ and 13C‐NMR, and mass spectra, and by a single‐crystal X‐ray structure determination.  相似文献   

12.
This study investigated the dependence of the anticorrosion performance of a poly(γ‐glycidoxypropyltrimethoxysilane) (poly(γ‐GPTMS)) sol‐gel coating on AA2024‐T3 aluminum alloy surface state. Two different AA2024‐T3 surface pretreatment procedures were tested: a degreasing with acetone and a chemical multistep etching process (industrial chemical etching pretreatment). Poly(γ‐GPTMS) coatings were deposited onto both pretreated surfaces using the dip‐coating technique. Surfaces were characterized principally by scanning electron microscopy, X‐ray photoelectron spectroscopy, Fourier transform infrared attenuated total reflectance, contact angles, and roughness measurements. Moreover, for the coated AA2024‐T3 surfaces, a pull‐off test was used to evaluate the poly(γ‐GPTMS) adhesion to the pretreated surface. Bare surface properties depended on the applied pretreatment. The chemically etched surface was the roughest and the most concentrated in hydroxyl groups. In addition, comparatively to the degreased surface, it has a more hydrophobic character. Poly(γ‐GPTMS) coating revealed an uneven nature and a poor adhesion once it was deposited onto the degreased surface. Coatings anticorrosion performances were evaluated using electrochemical impedance spectroscopy measurements (EIS). Electrochemical impedance spectroscopy data proved that the sol‐gel coating applied onto the chemically etched surface had better anticorrosion performance.  相似文献   

13.
In the present work, an innovative leach proof nanocatalyst based on dendritic fibrous nanosilica (DFNS) modified with ionic liquid loaded Fe3O4 NPs and CuI salts was designed and applied for the rapid synthesis of imidazo[1,2‐a]pyridines from the reaction of phenyl acetylene, 2‐aminopyridine, and aldehydes in aqueous medium. The structure of the synthesized nanocatalyst was studied by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), flame atomic absorption spectroscopy (FAAS), energy‐dispersive X‐ray (EDX), and X‐ray diffraction (XRD), vapor–liquid–solid (VLS), and adsorption/desorption analysis (Brunauer–Emmett–Teller [BET] equation) instrumental techniques. CuI/Fe3O4NPs@IL‐KCC‐1 with high surface area (225 m2 g?1) and porous structure not only exhibited excellent catalytic activity in aqueous media but also, with its good stability, simply recovered by an external magnet and recycled for eight cycles without significant loss in its intrinsic activity. Higher catalytic activity of CuI/Fe3O4NPs@IL‐KCC‐1 is due to exceptional dendritic fibrous structure of KCC‐1 and the ionic liquid groups that perform as strong anchors to the loaded magnetic nanoparticles (MNPs) and avoid leaching them from the pore of the nanocatalyst. Green reaction media, shorter reaction times, higher yields (71–97%), easy workup, and no need to use the chromatographic column are the advantages of the reported synthetic method.  相似文献   

14.
A novel strategy to improve the sensitivity of molecularly imprinted polymer (MIP) sensors was proposed for the determination of β2‐agonists. The imprinted sol‐gel film was prepared by mixing silica sol with a functional monomer of antimony‐doped tin oxide (ATO) and a template of β2‐agonists. ATO, which was embedded in the surface of the molecularly imprinted sol‐gel film, not only provides the excellent conductivity for biosensor but also increases the stability and the surface area of the MIP film. The imprinted sensor was characterised by field emission scanning electron microscope, fourier transform infrared spectroscopy and electrochemical methods. Under the optimal experimental conditions, the peak current was linear with the logarithm of the concentration of clenbuterol (CLB) in the range of 5.5 nM–6.3 µM, and a detection limit of 1.7 nM was obtained. Meanwhile, the electrochemical sensor showed excellent specific recognition of the template molecule among structurally similar coexisting substances. Furthermore, the proposed sensor was satisfactorily applied to determine β2‐agonists in human serum samples. The good results indicated that highly effective molecularly imprinted sol‐gel films doped with ATO can be employed for other analytes.  相似文献   

15.
The new complex, cis‐β‐[Cr(2,2,3‐tet)(N3)2]Br (2,2,3‐tet = 1,4,7,11‐tetraazaundecane), was prepared and its structure was determined by single‐crystal X‐ray diffraction. The chromium(III) atom is in a distorted octahedral environment coordinated by four nitrogen atoms of 2,2,3‐tet and two azido ligands in a cis‐β arrangement, with bent Cr–N3 linkages at the coordinating azide nitrogen atoms. The mean Cr–N(2,2,3‐tet) and Cr–N(azide) bond lengths are 2.084(5) and 2.021(5) Å, respectively. The crystal structure is stabilized by ionic interactions, supported by N–H ··· N(azide) and N–H ··· Br hydrogen bonds. The IR and electronic spectroscopic properties are also discussed.  相似文献   

16.
n‐Dodecyltriethoxysilane (DTEOS) modified NaHSO4/MCM‐41 catalysts (silanized catalysts) were synthesized by different impregnation sequences and evaluated in the liquid‐phase dehydration of castor oil. The samples were evaluated by X‐ray diffraction, nitrogen adsorption‐desorption, SEM, TEM, FT‐IR spectroscopy, XPS, 29Si MAS NMR spectroscopy, contact angle measurements, NH3‐TPD, and pyridine‐FT‐IR spectroscopy. The analyses demonstrated that silanization enhanced the hydrophobicity of the catalysts, and the impregnation sequence of silanized catalysts had a significant effect on the NaHSO4 dispersion, surface area, acid distribution, and hydrophobicity of the silanized catalysts. The catalytic activity of the silanized catalysts was much higher than that of NaHSO4/MCM‐41. Among the silanized catalysts, the catalyst prepared by simultaneous impregnation with DTEOS and NaHSO4 showed the highest iodine value of 141.8 [g(I2) per 100 g] and lowest hydroxyl value of 11.3 [mg(KOH) · g–1].  相似文献   

17.
Diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) and poly(?‐caprolactone) (PCL), poly(δ‐valerolactone) (PVL), poly(L ‐lactic acid) (PLLA), or poly(lactic‐co‐glycolic acid) (PLGA) as biodegradable polyesters were prepared to examine the phase transition of diblock copolymer solutions. MPEG–PCL and MPEG–PVL diblock copolymers and MPEG–PLLA and MPEG–PLGA diblock copolymers were synthesized by the ring‐opening polymerization of ?‐caprolactone or δ‐valerolactone in the presence of HCl · Et2O as a monomer activator at room temperature and by the ring‐opening polymerization of L ‐lactide or a mixture of L ‐lactide and glycolide in the presence of stannous octoate at 130 °C, respectively. The synthesized diblock copolymers were characterized with 1H NMR, IR, and gel permeation chromatography. The phase transitions for diblock copolymer aqueous solutions of various concentrations were explored according to the temperature variation. The diblock copolymer solutions exhibited the phase transition from gel to sol with increasing temperature. As the polyester block length of the diblock copolymers increased, the gel‐to‐sol transition moved to a lower concentration region. The gel‐to‐sol transition showed a dependence on the length of the polyester block segment. According to X‐ray diffraction and differential scanning calorimetry thermal studies, the gel‐to‐sol transition of the diblock copolymer solutions depended on their degrees of crystallinity because water could easily diffuse into amorphous polymers in comparison with polymers with a crystalline structure. The crystallinity markedly depended on both the distinct character and composition of the block segment. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5784–5793, 2004  相似文献   

18.
A series of silica gel immobilized lanthanum catalysts were prepared for the atom‐economy synthesis of N‐substituted carbamates from urea derivatives and dimethyl carbonate. The La/SiO2 catalysts with lanthanum loadings varied from 1.3 wt% to 8.5 wt% were characterized by AES, BET, XRD, TEM, FT‐IR, XPS and TPD. According to the characterization, lanthanum species with particle sizes of 5–10 nm on the surface of silica gel were formed. The catalysts were all amorphous and the surface areas were 336.5–530.2 m2/g. NH3‐TPD analysis showed that all samples exhibited similar acid strength with different acid amounts. FT‐IR measurement indicated that the component of lanthanum species on the catalyst surface were La(OH)3, LaOOH and hydrated La2O3. Also, the peak value of the absolute amount of LaOOH was obtained with 4.3 wt% lanthanum loading. The BET surface area decreased dramatically when the lanthanum loading was above 4.3 wt%. In consideration of the results obtained from the catalytic reactions, it could be concluded that LaOOH was the possible active species and high surface area was important for the high catalytic activity.  相似文献   

19.
Millimeter size γ‐Al2O3 beads were prepared by alginate assisted sol–gel method and grafting organic groups with propyl sulfonic acid and alkyl groups as functionalized γ‐Al2O3 bead catalysts for fructose dehydration to 5‐hydroxymethylfurfural (5‐HMF). Experiment results showed that the porous structure of γ‐Al2O3 beads was favorable to the loading and dispersion of active components, and had an obvious effect on the properties of the catalyst. The lower calcination temperature of γ‐Al2O3 beads increased the specific surface area, the hydrophobicity and the activity of catalysts. Competition between the reaction of alkyl groups and ‐SH groups with surface hydroxyl during the preparation process of the catalyst influenced greatly the acid site densities, hydrophobic properties and activity of the catalyst. With an increase in the alkyl group chain, the hydrophobicity of catalysts increased obviously and the activity of the catalyst was enhanced. The most hydrophobic catalyst C16‐SO3H‐γ‐Al2O3–650°C exhibited the highest yield of 5‐HMF (84%) under the following reaction conditions: reaction medium of dimethylsulfoxide/H2O (V/V, 4:1), catalyst amount of 30 mg, temperature of 110°C and reaction time of 4 hr.  相似文献   

20.
A novel open‐tubular CEC column coated with chitosan‐graft‐(β‐CD) (CDCS) was prepared using sol‐gel technique. In the sol‐gel approach, owing to the 3D network of sol‐gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. The column efficiencies of 55 000~163 000 plates/m for the isomeric xanthopterin and phenoxy acid herbicides using the sol‐gel‐derived CDCS columns were achieved. Good stabilities were demonstrated that the RSD values for the retention time of thiourea and isoxanthopterin were 1.3 and 1.4% (run to run, n = 5), 1.6 and 2.0% (day to day, n = 3), 2.9 and 3.1% (column to column, n = 3), respectively. The sol‐gel‐coated CDCS columns have shown improved separations of isomeric xanthopterin in comparison with CDCS‐bonded capillary column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号