首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Saturn-like systems consisting of nanoscale rings and spheres are fascinating motifs in supramolecular chemistry. Several ring molecules are known to include spherical molecules at the center of the cavity via noncovalent attractive interactions. In this Minireview, we generalize the molecular design, the structural features, and the supramolecular chemistry of such “nano-Saturns”, which consist of monocyclic rings and fullerene spheres (mainly C60), on the basis of previous experimental and theoretical studies. Ring molecules are classified into three types (loop, belt, and disk) according to their shapes and possible interactions. Whereas typical belt-shaped rings tend to form tight complexes due to the wide contact area via π–π interactions, flat disk-shaped rings generally form weak complexes due to the narrow contact area mainly via CH–π interactions. In spite of the small association energies, disk-shaped rings are attractive because such rings can mimic the planet Saturn precisely as exemplified by an anthracene cyclic hexamer–C60 complex.  相似文献   

2.
Three azide complexes with the tridentate ligand 2, 6‐bis(benzimidazol‐2‐yl)pyridine (H2BBIP) were synthesized and their complicated supramolecular interactions were investigated with single‐crystal X‐ray diffraction. Interestingly, the complexes are assembled by bifurcated hydrogen bonding, double helical π–π stacking, or anion–π stacking interactions of the benzimidazole rings by tuning the reaction conditions (temperature, ratio, solvent). Complex 1 is a mononuclear compound, namely, Mn(H2BBIP)N3(CH3O) · CH3OH. In its 3D supramolecular network, the nitrogen atom of the azide anion is acting as hydrogen bonding bifurcated acceptor. Complex 2 is a dinuclear compound, namely, Mn2(H2BBIP)2(N3)2 · (H2O)0.5. The dinuclear unit is connected by intramolecular π–π stacking interactions. Furthermore, double helical π–π stacking interactions in the benzimidazole rings are observed. Complex 3 , Mn2(H2BBIP)2(N3)2 · CH3OH, can be formulated as a pseudopolymorph of complex 2 , which exhibits intramolecular π–π stacking interactions as well as anion–π interactions in the dinuclear unit.  相似文献   

3.
The crystal structures of the antimicrobial drug tinidazole [ TNZ ; systematic name: 1‐(2‐ethylsulfonylethyl)‐2‐methyl‐5‐nitroimidazole, C8H13N3O4S] and the 1:1 cocrystal of TNZ with the naturally occurring compound vanillic acid ( VA ; systematic name: 4‐hydroxy‐3‐methoxybenzoic acid, C8H8O4), namely, the TNZ – VA cocrystal, were determined by single‐crystal X‐ray analysis at 100 K. The supramolecular structure of the TNZ – VA cocrystal is composed of a carboxylic acid dimer and an O—H…N(heterocycle) synthon in the form of layers made up of O—H…N and O—H…O hydrogen bonds. The layers are joined via C—H…O hydrogen bonds, π–π stacking and C—H…π interactions. The energy framework analysis, together with interaction energy calculations using the DLPNO‐CCSD(T) method, indicates that the TNZ – VA cocrystal inherits strong interactions from the TNZ and VA crystals, which accounts for the enhanced thermal stability and reduced dissolution rate. To the best of our knowledge, this is the first example of a cocrystal containing TNZ .  相似文献   

4.
Herein, we investigate the association of a fullerene fragment, hemifullerene C30H12, with an electron‐donating bowl‐shaped tetrathiafulvalene derivative (truxTTF). UV/Vis titrations and DFT calculations support formation of the supramolecular complex, for which an association constant of log Ka=3.6±0.3 in CHCl3 at room temperature is calculated. Remarkably, electron transfer from truxTTF to C30H12 to form the fully charge‐separated species takes place upon irradiation of the associate with light, constituting the first example in which a fullerene fragment mimics the electron‐accepting behavior of fullerenes within a supramolecular complex.  相似文献   

5.
The interactions between atoms of noble gases and π systems are generally considered as van der Waals interaction, which have not attracted attention yet. Herein, we present high‐level ab initio calculations to show the unexpected noncovalent interaction between a covalently bonded noble gas atom and a delocalized aromatic π electron using XeO3?benzene as the prototype. The CCSD(T)/CBS reference data show its strength amounting to ?10.2 kcal mol?1, comparable to a typical H‐bond or an anion–π interaction. The energy decomposition analysis reveals that the aerogen–π interaction is favored by the electrostatic interaction (27.7 %), the induction (13.4 %), and the dispersion (21.6 %). This interaction may prompt us to consider the noncovalent chemistry of aerogen derivatives in the near future.  相似文献   

6.
Anion–π interactions have been widely studied as new noncovalent driving forces in supramolecular chemistry. However, self‐assembly induced by anion–π interactions is still largely unexplored. Herein we report the formation of supramolecular amphiphiles through anion–π interactions, and the subsequent formation of self‐assembled vesicles in water. With the π receptor 1 as the host and anionic amphiphiles, such as sodium dodecylsulfate (SDS), sodium laurate (SLA), and sodium methyl dodecylphosphonate (SDP), as guests, the sequential formation of host–guest supramolecular amphiphiles and self‐assembled vesicles was demonstrated by SEM, TEM, DLS, and XRD techniques. The intrinsic anion–π interactions between 1 and the anionic amphiphiles were confirmed by crystal diffraction, HRMS analysis, and DFT calculations. Furthermore, the controlled disassembly of the vesicles was promoted by competing anions, such as NO3?, Cl?, and Br?, or by changing the pH value of the medium.  相似文献   

7.
A new 15-membered-macrocyclic molecular entity, oxa-TriQuinoline (o-TQ), was designed and synthesized. In o-TQ, three oxygen atoms were joined onto three quinoline units at the 2- and 8-positions in a head-to-tail fashion by three-fold SNAr reactions, giving rise to the characteristic N3O3 aza-oxa-crown architecture. o-TQ can serve as a new tridentate nitrogen ligand to capture a CuI cation and adopt a bowl shape, before supramolecular complexation with corannulene and [12]cycloparaphenylene (CPP) occurs through π–π and CH–π interactions. In the presence of the CuI cation, the non-emissive o-TQ becomes a highly emissive material in the solid state, whereby the emission wavelengths depend on the ancillary ligand on the CuI cation. The o-TQ/CuI complex is able to promote carbene catalysis to provide a range of enamines with a gem-difluorinated terminus.  相似文献   

8.
The supramolecular modification of planar graphene with the geometrically mismatched, curved 9,10‐di(1,3‐dithiole‐2‐ylidene)‐9,10‐dihydroanthracene (exTTF) molecule is demonstrated. The exTTF–graphene interaction is governed by π–π and CH–π interactions, with a negligible contribution from charge transfer. We amplified these weak forces through multivalent gold nanoparticles. Our results show that planarity is not a prerequisite for recognition motifs for graphene.  相似文献   

9.
Noncovalent interactions, such as π–π stacking interactions, C—H…π interactions and hydrogen bonding, are important driving forces for self‐assembly in the construction of functional supermolecules and materials, especially in multicomponent supramolecular systems. Herein, a novel compound based on a π‐acidic naphthalene diimide derivative and a double hydroxide‐bridged dinuclear Al3+ aqua ion cluster, namely bis[N,N′‐bis(2‐sulfonatoethyl)‐1,4,5,8‐naphthalene diimide] di‐μ‐hydroxido‐bis[tetraaquaaluminium(III)] tetrahydrate, (C18H12N2O10S2)2[Al2(OH)2(H2O)8]·4H2O, was obtained using the above‐mentioned common noncovalent interactions, as well as uncommon lone‐pair–π interactions. Functional molecular modules were connected by these noncovalent interactions to generate obvious photochromic properties. The compound was prepared by the self‐assembly of N,N′‐bis(2‐sulfoethyl)‐1,4,5,8‐naphthalene diimide and Al(NO3)3·9H2O under mixed solvothermal conditions, and was characterized in detail by single‐crystal X‐ray diffraction, powder X‐ray diffraction and FT–IR spectroscopy. The thermal stability and photochromic properties were also investigated; furthermore, in‐situ solid‐state UV–Vis absorption spectroscopy and electron spin resonance (ESR) were used to clarify the photochromic mechanism.  相似文献   

10.
Herein, we designed chiral photoresponsive tetra(2‐phenylthiazole)s, which induce a diastereoselective 6π‐electrocyclization reaction in a helically folded structure to freeze the conformational interconversions. The folding conformation with one helical turn of tetra(2‐phenylthiazole)s was supported by multiple intramolecular noncovalent interactions including vicinal S???N interheteroatom interactions and CH–π and π–π stacking interactions between nonadjacent units, as found in X‐ray crystal structures as well as quantum chemical calculations. The introduction of a chiral group at both ends of tetra(2‐phenylthiazole) dictates the preferential folding into a one‐handed helix conformation by the simultaneous operation of S???O and multiple CH–π interactions that involve the chiral end groups. Since the tetra(2‐phenylthiazole)s possess two equivalent photoreactive 6π‐electron systems and the folded conformation is suitable for photoinduced electrocyclization reaction, they undergo a photocyclization reaction in a stereoselective manner to memorize the chirality of the helix in a resulting diastereomeric closed form.  相似文献   

11.
The role of CH–π and CF–π interactions in determining the structure of N‐heterocyclic carbene (NHC) palladium complexes were studied using 1H NMR spectroscopy, X‐ray crystallography, and DFT calculations. The CH–π interactions led to the formation of the cisanti isomers in 1‐aryl‐3‐isopropylimidazol‐2‐ylidene‐based [(NHC)2PdX2] complexes, while CF–π interactions led to the exclusive formation of the cis‐syn isomer of diiodobis(3‐isopropyl‐1‐pentafluorophenylimidazol‐2‐ylidene) palladium(II).  相似文献   

12.
A procedure for studying “dynamic structural behavior” of large chiral macrocycles is presented. Ion mobility MS, diffusion‐ordered NMR spectroscopy (DOSY NMR), and optical rotation (OR) measurements, supported by calculations, are used together as effective complementary methods to study dynamic formation of noncovalent aggregates. It is shown that the monomer–dimer equilibrium is driven by π–π or CH–π interactions and controlled largely by the substitution pattern of the calixsalen skeleton.  相似文献   

13.
Host–guest and supramolecular chemistry can produce water-solubilization of fullerenes such as C60, C70, and C60/70 derivatives by hydrophobic interactions, CH–π interactions, and/or π–π interactions. For materials and biomedical applications, these water-soluble host–fullerene complexes must have the following important properties: (i) high solubility, (ii) high stability, and (iii) functionalization of the host–fullerene complex. These objectives can be achieved by selection of appropriate host molecules, development of novel solubilizing methods, and synthesis of functionalized host molecules. This review describes the introduction of a variety of host molecules that can solubilize fullerenes in water. In addition, we describe applications of host–fullerene complexes, in particular using photoinduced energy- and electron-transfer processes in water.  相似文献   

14.
To investigate the influence of the non‐covalent interactions, such as hydrogen‐bonding, π–π packing and d10–d10 interactions in the supramolecular motifs, three cyanido‐bridged heterobimetallic discrete complexes {Mn(bipy)2(H2O)[Ag(CN)2]}[Ag(CN)2] ( 1 ), {Mn(phen)2(H2O)[Au(CN)2]}2[Au(CN)2]2 · 4H2O ( 2 ), and {Cd(bipy)2(H2O)[Au(CN)2]}[Au(CN)2] ( 3 ) (bipy = 2,2′‐bipyridine, and phen = 1,10‐phenanthroline), which are based on dicyanidometallate(I) groups with 1:2 stoichiometry of metal ions and 2,2′‐bipyridyl‐like co‐ligands were synthesized and structurally characterized. In compound 1 , hydrogen bonding and π–π interactions governed the supramolecular contacts. In compound 2 , the incorporation of aurophilic, hydrogen bonding and π–π interactions result in a 3D supramolecular network. In compound 3 , hydrogen bonding and π–π stacking interactions result in a 2D supramolecular layer. In the three complexes, hydrogen‐bonding, π–π packing and/or d10–d10 interactions can play important roles in increasing the dimensionality of supramolecular assemblies.  相似文献   

15.
4′‐Substituted derivatives of 2,2′:6′,2′′‐terpyridine with N‐containing heteroaromatic substituents, such as pyridyl groups, might be able to coordinate metal centres through the extra N‐donor atom, in addition to the chelating terpyridine N atoms. The incorporation of these peripheral N‐donor sites would also allow for the diversification of the types of noncovalent interactions present, such as hydrogen bonding and π–π stacking. The title compound, C24H16N4, consists of a 2,2′:6′,2′′‐terpyridine nucleus (tpy), with a pendant isoquinoline group (isq) bound at the central pyridine (py) ring. The tpy nucleus deviates slightly from planarity, with interplanar angles between the lateral and central py rings in the range 2.24 (7)–7.90 (7)°, while the isq group is rotated significantly [by 46.57 (6)°] out of this planar scheme, associated with a short Htpy…Hisq contact of 2.32 Å. There are no strong noncovalent interactions in the structure, the main ones being of the π–π and C—H…π types, giving rise to columnar arrays along [001], further linked by C—H…N hydrogen bonds into a three‐dimensional supramolecular structure. An Atoms In Molecules (AIM) analysis of the noncovalent interactions provided illuminating results, and while confirming the bonding character for all those interactions unquestionable from a geometrical point of view, it also provided answers for some cases where geometric parameters are not informative, in particular, the short Htpy…Hisq contact of 2.32 Å to which AIM ascribed an attractive character.  相似文献   

16.
The π–π interactions between CO2 and three aromatic molecules, namely benzene (C6H6), pyridine (C5H5N), and pyrrole (C4H5N), which represent common functional groups in metal‐organic/zeoliticimidazolate framework materials, were characterized using high‐level ab initio methods. The coupled‐cluster with single and double excitations and perturbative treatment of triple excitations (CCSD(T)) method with a complete basis set (CBS) was used to calibrate Hartree–Fock, density functional theory, and second‐order M?ller–Plesset (MP2) with resolution of the identity approximation calculations. Results at the MP2/def2‐QZVPP level showed the smallest deviations (only about 1 kJ/mol) compared with those at the CCSD(T)/CBS level of theory. The strength of π–π binding energies (BEs) followed the order C4H5N > C6H6 ~ C5H5N and was roughly correlated with the aromaticity and the charge transfer between CO2 and aromatic molecule in clusters. Compared with hydrogen‐bond or electron donor–acceptor interactions observed during BE calculations at the MP2/def2‐QZVPP level of theory, π–π interactions significantly contribute to the total interactions between CO2 and aromatic molecules. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
While CH–π interactions with target proteins are crucial determinants for the affinity of arguably every drug molecule, no method exists to directly measure the strength of individual CH–π interactions in drug–protein complexes. Herein, we present a fast and reliable methodology called PI (π interactions) by NMR, which can differentiate the strength of protein–ligand CH–π interactions in solution. By combining selective amino‐acid side‐chain labeling with 1H‐13C NMR, we are able to identify specific protein protons of side‐chains engaged in CH–π interactions with aromatic ring systems of a ligand, based solely on 1H chemical‐shift values of the interacting protein aromatic ring protons. The information encoded in the chemical shifts induced by such interactions serves as a proxy for the strength of each individual CH–π interaction. PI by NMR changes the paradigm by which chemists can optimize the potency of drug candidates: direct determination of individual π interactions rather than averaged measures of all interactions.  相似文献   

18.
Three copper(II) complexes of the polydentate N‐donor ligand [4‐(4,6‐bis(1H‐pyrazol‐1‐yl)‐1,3,5‐triazin‐2‐yl)morpholine] (L) with chlorides, nitrates, and perchlorates as anions, namely, [CuCl2(L)] · 0.5(MeCN) ( 1 ), [Cu(NO3)2(H2O)(L)] · (MeCN) ( 2 ), and [Cu(L)2](ClO4)2 · (MeCN) ( 3 ) were synthesized and structurally characterized by IR, elemental analysis and X‐ray crystallographic analysis. In these complexes, the L ligand binds the copper(II) cation in the tridentate N3 form. The coordination arrangement around the central copper(II) atom is distorted square‐pyramidal in 1 but it is distorted octahedral in 2 and 3 . The interesting noncovalent interactions such as hydrogen bonds, π–π stacking, and anion–π interactions present in the solid‐state structures are discussed. The crystal results reveal that the counteranions play important roles in determining the diverse structures of these complexes. Moreover, the PXRD, TG, DRS, and fluorescence properties of compounds 1 – 3 were investigated.  相似文献   

19.
A new series of N‐heterocyclic carbene (NHC) ligand precursors ( 1 and 2 ) with their [Ag(I)(NHC)2]PF6 complexes ( 3 and 4 ) and [ClAu(I)(NHC)] complexes ( 5 and 6 ) are reported. Complexes 5 and 6 were synthesized via transmetalation reaction using either 3 or 4 and AuCl(SMe2) as reactants, respectively. All the synthesized compounds were fully characterized using elemental analyses and Fourier transform infrared, 1H NMR and 13C NMR spectroscopies. In the crystal structures of 3 , 5 and 6 , the Ag(I) and Au(I) ions are in a linear geometry. The entire structure of 3 is stabilized by significant π–π interactions, while the structures of 5 and 6 are stabilized with the presence of aurophilic interactions between the adjacent Au(I) ions as well as CH–π or π–π interactions. From photoluminescence studies, complexes 5 and 6 show dual‐emission characteristics. The higher‐energy fluorescence originates from 1XLCT mixed with 1MLCT, while the lower‐energy phosphorescence is ascribed to 3XLCT and 3MLCT with small contribution of 3ILCT, as evidenced by density functional theory (DFT) and time‐dependent DFT calculations of the modelled molecules.  相似文献   

20.
The anionic FeIII complex exhibiting cooperative spin transition with a wide thermal hysteresis near room temperature, K[Fe(5‐Brthsa)2] (5‐Brthsa‐H2=5‐bromosalicylaldehyde thiosemicarbazone), is reported. The hysteresis (Δ=69 K in the first cycle) shows a one‐step transition in heating mode and a two‐step transition in cooling mode. X‐ray structure analysis showed that the coexistence of hydrogen bond and cation–π interactions, as well as alkali metal coordination bonds, to give 2D coordination polymer structure. This result is contrary to previous reports of broad thermal hysteresis induced by coordination bonds of FeII spin crossover coordination polymers (with 1D/3D structures), and by strong intermolecular interactions in the molecular packing through π–π stacking or hydrogen‐bond networks. As a consequence, the importance, or the very good suitability of alkali metal‐based coordination bonds and cation–π interactions for communicating cooperative interactions in spin‐crossover (SCO) compounds must be reconsidered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号