首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学会会志》2017,64(8):934-939
This study evaluated the structural, electronic and thermochemical properties of an anticancer active molecule, i.e. trans‐bis‐(3‐aminoflavone)dichloridoplatinum(II) (trans‐Pt(3‐af)2Cl2; TCAP) in the gas and solution phases. The polarizable continuum model (PCM) model was used to perform the required calculations in five solvents with different polarities. Moreover, the dependencies of energetic aspects, structural, thermodynamic parameters and frontier orbital energies of the complex were also examined. Dependencies of the frequency shifts of u(CO), u(NH) and 195Pt Chemical shifts on the solvent dielectric were investigated by Kirkwood–Bauer–Magat equation (KBM). The energies of platinum d‐orbitals and formal electron configurations of Pt atom were calculated by natural bond analysis (NBO).  相似文献   

2.
《中国化学会会志》2017,64(4):369-378
In the present research, the impact of substitution on the dipole moment, electronic structure, and frontier orbital energy in trans ‐(H3P )22‐BH4 )W(≡C‐para ‐C6H4X )(CO ) complexes (X = H, F, SiH3 , CN , NO2 , SiMe3 , CMe3 , NH2 , NMe2 ) was studied with mpw1pw91 quantum chemical computations. The nature of the chemical bond between the trans‐[Cl(η2‐BH4 )(H3P ) 2W ] and [C‐para ‐C6H4X ]+ fragments was demonstrated through energy decomposition analysis (EDA ). The percentage composition in terms of the specified groups of frontier orbitals was examined for these complexes to investigate the feature in metal–ligand bonds. Quantum theory of atoms in molecules (QTAIM ) and natural bond orbital (NBO ) analysis were applied to elucidate these complexes’ metal–ligand bonds.  相似文献   

3.
The pale‐rose compound [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] · 4 H2O was prepared from adipic acid and CoCO3 in aqueous solution. The crystal structure (monoclinic, P21/n (no. 14), a = 8.061(1), b = 15.160(2), c = 9.708(2) Å, β = 90.939(7)°, Z = 2, R = 0.0405, wR2 = 0.0971) consists of adipate bridged supramolecular [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] layers and hydrogen bonded H2O molecules. The cobalt atoms Co1 and Co2 are distorted octahedrally coordinated by the O atoms of two bridging trans‐H2O molecules and four bidentate adipate anions (Co1) and by the O atoms of two bridging trans‐H2O molecules and four monodentate H2O molecules (Co2), respectively. Equatorial bonds: d(Co1–O) = 2.048 Å (2 × ), 2.060 Å (2 × ); d(Co2–O) = 2.057 Å (2 × ), 2.072 Å (2 × ). Axial bonds: d(Co1–O) = 2.235 Å (2 × ); d(Co2–O) = 2.156 Å (2 × ).  相似文献   

4.
The mononuclear complex, [NiCl2 (trzCH2CH2COPh)4]·6H2O (trz =1,2,4‐triazole), was synthesized and its structure was determined by single crystal X‐ray determination. It crystallizes in the monoclinic system, space group P21/c, with lattice parameters: a = 0.80391(2) nm, b = 1.08215(2) tun, c = 2.90133(2) nm, β = 94.792 (1)° and Z = 2. Each nickel atom is coordinated by four N atoms of triazole from four β‐(1,2,4‐triazole‐1‐yl)propiophenone ligands and two chloride anions in trans arrangement with octahedral coordination geometry. In addition to the coordinating nickel complex, there are six uncoordinated water molecules. The Ni‐Cl distance is 0.24865(8) nm and the Ni‐N distances are in the range of 0.2072(2) to 0.2099(2) nm, respectively. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds. The intermolecular hydrogen bonds connect the [NiCl2(C2H2N3CH2CH2COPh)4] and H2O moieties. The deep green crystals were also examined by elemental analysis, FT‐IR and UV spectra, which are in agreement with the structural data.  相似文献   

5.
We report the synthesis of [n]manganoarenophanes (n=1, 2) featuring boron, silicon, germanium, and tin as ansa‐bridging elements. Their preparation was achieved by salt‐elimination reactions of the dilithiated precursor [Mn(η5‐C5H4Li)(η6‐C6H5Li)]?pmdta (pmdta=N,N,N′,N′,N′′‐pentamethyldiethylenetriamine) with corresponding element dichlorides. Besides characterization by multinuclear NMR spectroscopy and elemental analysis, the identity of two single‐atom‐bridged derivatives, [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] and [Mn(η5‐C5H4)(η6‐C6H5)SiPh2], could also be determined by X‐ray structural analysis. We investigated for the first time the reactivity of these ansa‐cyclopentadienyl–benzene manganese compounds. The reaction of the distannyl‐bridged complex [Mn(η5‐C5H4)(η6‐C6H5)Sn2tBu4] with elemental sulfur was shown to proceed through the expected oxidative addition of the Sn?Sn bond to give a triatomic ansa‐bridge. The investigation of the ring‐opening polymerization (ROP) capability of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] showed that an unexpected, unselective insertion into the Cipso?Sn bonds of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] had occurred.  相似文献   

6.
[Cu(C12H8N2)(C4H4O4)(H2O)]2 · C4H6O4 was prepared by the reaction of succinic acid, CuCl2 · 2 H2O, 1,10‐phenanthroline (phen = C12H8N2), and Na2CO3 in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 7.493(1), b = 9.758(1), c = 13.517(1) Å; α = 68.89(1)°, β = 88.89(1)°, γ = 73.32(1)°, Z = 1, R = 0.0308, wR2 = 0.0799 for 3530 observed reflections (F ≥ 2σ(F ) out of 3946 unique reflections) consists of hydrogen bonded succinic acid molecules and succinato bridged 1 D zipperlike supramolecular [Cu(phen)(C4H4O4)2/2(H2O)]2 double chains based on 1 D π‐π stacking interactions between the chelating phen systems at distances of 3.71 Å and 3.79 Å. The Cu atoms are fivefold trigonal bipyramidally coordinated by two N atoms of the bidentate chelating phen ligand and three O atoms of one water molecule and two bidentate bridging succinate ligands. The water O atom and one phen N atom are at the apical positions (equatorial: d(Cu–O) = 1.945, 2.254(2) Å, d(Cu–N) = 2.034(2) Å; axial: d(Cu–O) = 1.971(2) Å, d(Cu–N) = 1.995 Å).  相似文献   

7.
Reaction Behaviour of Copper(I) and Copper(II) Salts Towards P(C6H4CH2NMe2‐2)3 ‐ the Solid‐State Structures of {[P(C6H4CH2NMe2‐2)3]CuOClO3}ClO4, {[P(C6H4CH2NMe2‐2)3]Cu}ClO4, [P(C6H4CH2NMe2‐2)3]CuONO2 and [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐2)]CuONO2 The reaction behaviour of P(C6H4CH2NMe2‐2)3 ( 1 ) towards different copper(II) and copper(I) salts of the type CuX2 ( 2a : X = BF4, 2b : X = PF6, 2c : X = ClO4, 2d : X = NO3, 2e : X = Cl, 2f : X = Br, 13 : X = O2CMe) and CuX ( 5a : X = ClO4, 5b : X = NO3, 5c : X = Cl, 5d : X = Br) is discussed. Depending on X, the transition metal complexes [P(C6H4CH2NMe2‐2)3Cu]X2 ( 3a : X = BF4, 3b : X = PF6), {[P(C6H4CH2NMe2‐2)3]CuX}X ( 4 : X = ClO4, 11a : X = Cl, 11b : X = Br, 14 : X = O2CMe), {[P(C6H4CH2NMe2‐2)3]Cu}ClO4 ( 6 ), [P(C6H4CH2NMe2‐2)3]CuX ( 7a : X = Cl, 7b : X = Br, 10 : X = ONO2), [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐2)]CuONO2 ( 9 ) and [P(C6H4CH2NMe2‐2)3]CuCl}CuCl2 ( 12 ) are accessible. While in 3a , 3b and 6 the phosphane 1 preferentially acts as tetrapodale ligand, in all other species only the phosphorus atom and two of the three C6H4CH2NMe2 side‐arms are datively‐bound to the appropriate copper ion. In solution a dynamic behaviour of the latter species is observed. Due to the coordination ability of X in 3a , 3b and 6 non‐coordinating anions X are present. However, in 4 one of the two perchlorate ions forms a dative oxygen‐copper bond and the second perchlorate ion acts as counter ion to {[P(C6H4CH2NMe2‐2)3]CuOClO3}+. In 7 , 9 and 10 the fragments X (X = Cl, Br, ONO2) form a σ‐bond with the copper(I) ion. The acetate moiety in 14 acts as chelating ligand as it could be shown by IR‐spectroscopic studies. All newly synthesised cationic and neutral copper(I) and copper(II) complexes are representing stable species. Redox processes are involved in the formation of 9 and 12 by reacting 1 with 2 . The solid‐state structures of 4 , 6 , 9 and 10 are reported. In the latter complexes the copper(II) ( 4 ) or copper(I) ion ( 6 , 9 , 10 ) possesses the coordination number 4. This is achieved by the formation of a phosphorus‐ and two nitrogen‐copper‐ ( 4 , 9 , 10 ) or three ( 6 ) nitrogen‐copper dative bonds and a coordinating ( 4 ) or σ‐binding ( 9 , 10 ) ligand X. In 6 all three nitrogen and the phosphorus atoms are coordinatively bound to copper, while X acts as non‐coordinating counter‐ion. Based on this, the respective copper ion occupies a distorted tetrahedral coordination sphere. While in 4 and 10 a free, neutral Me2NCH2 side‐arm is present, which rapidly exchanges in solution with the coordinatively‐bound Me2NCH2 fragments, this unit is protonated in 10 . NO3 acts as counter ion to the CH2NMe2H+ moiety. In all structural characterized complexes 6‐membered boat‐like CuPNC3 cycles are present.  相似文献   

8.
Treatment of Pd(PPh3)4 with 5‐bromo‐pyrimidine [C4H3N2Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C4H3N2)(Br)], 1 , by substituting two triphenylphosphine ligands. In acetonitrile solution of 1 in refluxing temperature for 1 day, it do not undergo displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐(η1‐C4H3N2)}2, or bromide ligand to form chelating pyrimidine complex [Pd(PPh3)22‐C4H3N2)]Br. Complex 1 reacted with bidentate ligand, NH4S2CNC4H8, and tridentate ligand, KTp {Tp = tris(pyrazoyl‐1‐yl)borate}, to obtain the η2‐dithiocarbamate η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐S2CNC4H8)], 4 and η2‐Tp η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐Tp)], 5 , respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses.  相似文献   

9.
A new nickel(II) complex, {[Ni(cyclam)(μ‐1,5‐dca)]ClO4·[(CH3)2CO]}n (1), (cyclam = 1, 4, 8, 11‐tetraazacyclotetradecane, dca = dicyanamide, N(CN)2) has been synthesized and structurally characterized. The complex crystallizes in orthorhombic system, space group Pnma; with a = 9.1958(15) Å, b = 15.528(3) Å, c = 16.335(3) Å and Z = 4. According to X‐ray crystallographic studies, 1 is a one‐dimensional zig‐zag infinite chain complex which consists of alternately single μ‐1,5‐dca linked the nickel atoms. The IR and UV spectroscopy were measured. The absorption bands of d–d electron transition are assigned and the values of Dq and B were calculated according to the electronic spectrum of the complex. The magnetic property studies indicate that complex 1 exhibits weak antiferromagnetic interaction through the five‐atom [NCNCN] bridging ligands with J = –0.382 cm−1.  相似文献   

10.
The synthesis of two new transition‐metal‐containing polyesters is described. The precursors are bifunctional organometallic monomers that were synthesized using 2,6‐bis(hydroxymethyl)‐p‐cresol as the key reagent. This was achieved by simple coupling reactions between the appropriate organometallic alkyl halide and the cresol reagent. Polycondensation reactions were carried out with terephthaloyl chloride using ambient temperature solution techniques. The new low molecular weight oligomeric polyesters were characterized using Fourier transform infrared and 1HNMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis and size‐exclusion chromatography analyses. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
《中国化学会会志》2017,64(11):1340-1346
In this investigation, we describe substituent effect on the dipole moment, ionization potential, electron affinity, structure, frontier orbitals energy, in the trans‐Cl(OC)(H3P)3W(≡C‐para‐C6H4X) (X = H, F, SiH3, CN, NO2, SiMe3, CMe3, NH2, NMe2) complexes using MPW1PW91 quantum chemical calculations. The nature of chemical bond between the [Cl(OC)(H3P)3W] and [C‐para‐C6H4X]+ fragments was illustrated with energy decomposition analysis (EDA). Percentage composition in terms of the defined groups of frontier orbitals for these complexes was inspected to investigate the character in metal–ligand bonds. Quantum theory of atoms in molecules (QTAIM) was used for illustration of metal–ligand bonds in these complexes.  相似文献   

12.
The title compound [Cu2(phen)2(C9H14O4)2] · 6 H2O was prepared by the reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), azelaic acid and Na2CO3 in a CH3OH/H2O solution. The crystal structure (monoclinic, C2/c (no. 15), a = 22.346(3), b = 11.862(1), c = 17.989(3) Å, β = 91.71(1)°, Z = 4, R = 0.0473, wR2 = 0.1344 for 4279 observed reflections) consists of centrosymmetric dinuclear [Cu2(phen)2(C9H14O4)2] complexes and hydrogen bonded H2O molecules. The Cu atom is square‐planar coordinated by the two N atoms of the chelating phen ligand and two O atoms of different bidentate bridging azelaate groups with d(Cu–N) = 2.053, 2.122(2) Å and d(Cu–O) = 1.948(2), 2.031(2) Å. Two azelaate anions bridge two common Cu atoms via the terminal O atoms (d(C–O) = 1.29(2) Å; d(C–C) = 1.550(4)–1.583(4) Å). Phen ligands of adjacent complexes cover each other at distances of about 3.62 Å, indicating π‐π stacking interaction, by which the complexes are linked to 1 D bands.  相似文献   

13.
Equilibrium geometries, bond dissociation energies and relative energies of axial and equatorial iron tetracarbonyl complexes of the general type Fe(CO)4L (L = CO, CS, N2, NO+, CN, NC, η2‐C2H4, η2‐C2H2, CCH2, CH2, CF2, NH3, NF3, PH3, PF3, η2‐H2) are calculated in order to investigate whether or not the ligand site preference of these ligands correlates with the ratio of their σ‐donor/π‐acceptor capabilities. Using density functional theory and effective‐core potentials with a valence basis set of DZP quality for iron and a 6‐31G(d) all‐electron basis set for the other elements gives theoretically predicted structural parameters that are in very good agreement with previous results and available experimental data. Improved estimates for the (CO)4Fe–L bond dissociation energies (D0) are obtained using the CCSD(T)/II//B3LYP/II combination of theoretical methods. The strongest Fe–L bonds are found for complexes involving NO+, CN, CH2 and CCH2 with bond dissociation energies of 105.1, 96.5, 87.4 and 83.8 kcal mol–1, respectively. These values decrease to 78.6, 64.3 and 64.2 kcal mol–1, respectively, for NC, CF2 and CS. The Fe(CO)4L complexes with L = CO, η2‐C2H4, η2‐C2H2, NH3, PH3 and PF3 have even smaller bond dissociation energies ranging from 45.2 to 37.3 kcal mol–1. Finally, the smallest bond dissociation energies of 23.5, 22.9 and 18.5 kcal mol–1, respectively are found for the ligands NF3, N2 and η2‐H2. A detailed examination of the (CO)4Fe–L bond in terms of a semi‐quantitative Dewar‐Chatt‐Duncanson (DCD) model is presented on the basis of the CDA and NBO approach. The comparison of the relative energies between axial and equatorial isomers of the various Fe(CO)4L complexes with the σ‐donor/π‐acceptor ratio of their respective ligands L thus does not generally support the classical picture of π‐accepting ligands preferring equatorial coordination sites and σ‐donors tending to coordinate in axial positions. In particular, this is shown by iron tetracarbonyl complexes with L = η2‐C2H2, η2‐C2H4, η2‐H2. Although these ligands are predicted by the CDA to be stronger σ‐donors than π‐acceptors, the equatorial isomers of these complexes are more stable than their axial pendants.  相似文献   

14.
Syntheses of the sky blue complex compounds [Ni(H2O)3(phen)(C5H6O4)] · H2O ( 1 ) and [Ni(H2O)2(phen)(C5H6O4)] ( 2 ) were carried out by the reactions of 1,10‐phenanthroline monohydrate, glutaric acid, NiSO4 · 6 H2O and Na2CO3 in CH3OH/H2O at pH = 6.9 and 7.5, respectively. The crystal structure of 1 (P 1 (no. 2), a = 14.289 Å, b = 15.182 Å, c = 15.913 Å, α = 67.108°, β = 87.27°, γ = 68.216°, V = 2934.2 Å3, Z = 2) consists of hydrogen bonded [Ni(H2O)3‐ (phen)(C5H6O4)]2 dimers and H2O molecules. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, three water O atoms and one carboxyl O atom from one monodentate glutarato ligand (d(Ni–N) = 2.086, 2.090 Å; d(Ni–O) = 2.064–2.079 Å). Through the π‐π stacking interactions and intermolecular hydrogen bonds, the dimers are assembled to form 2 D layers parallel to (0 1 1). The crystal structure of 2 (P21/n (no. 14), a = 7.574 Å, b = 11.938 Å, c = 18.817 Å, β = 98.48°, V = 1682.8 Å3, Z = 4) contains [Ni(H2O)2(phen)(C5H6O4)2/2] supramolecular chains extending along [010]. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, two water O atoms and two carboxyl O atoms from different bis‐monodentate glutarato ligands with d(Ni–N) = 2.082, 2.105 Å and d(Ni–O) = 2.059–2.087 Å. The supramolecular chains are assembled into a 3 D network by π‐π stacking interactions and interchain hydrogen bonds. A TG/DTA of 2 shows two endothermic effects at 132 °C and 390 °C corresponding to the complete dehydration and the lost of phen.  相似文献   

15.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels.  相似文献   

16.
In the course of investigations relating to magnesia oxysulfate cement the basic magnesium salt hydrate 3Mg(OH)2 · MgSO4 · 8H2O (3–1–8 phase) was found as a metastable phase in the system Mg(OH)2‐MgSO4‐H2O at room temperature (the 5–1–2 phase is the stable phase) and was characterized by thermal analysis, Raman spectroscopy, and X‐ray powder diffraction. The complex crystal structure of the 3–1–8 phase was determined from high resolution laboratory X‐ray powder diffraction data [space group C2/c, Z = 4, a = 7.8956(1) Å, b = 9.8302(2) Å, c = 20.1769(2) Å, β = 96.2147(16)°, and V = 1556.84(4) Å3]. In the crystal structure of the 3–1–8 phase, parallel double chains of edge‐linked distorted Mg(OH2)2(OH)4 octahedra run along [–110] and [110] direction forming a pattern of crossed rods. Isolated SO4 tetrahedra and interstitial water molecules separate the stacks of parallel double chains.  相似文献   

17.
Polymeric Iodoplumbates – Synthesis and Crystal Structures of (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF, (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF, and (Me3N–C2H4–NMe3)2[Pb2I7]I (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ) and (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF ( 2 ) have almost the same composition, but completely different structures. Both compounds are formed selectively depending on the reaction and crystallization conditions. In 2 the PbII atoms are coordinated either by six bridging I ligands in the two-dimensional [Pb5I14]4– network or by six DMF ligands in the [Pb(dmf)6]2+ cations. In contrast, (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ) contains non-coordinating I anions between the iodoplumbate layers. The iodoplumbate anions in 2 and 3 consist of face and corner sharing PbI6 octahedra, whereas in 1 PbI6 and PbI5(dmf) octahedra share common edges to form a one-dimensional polymeric section of the PbI2 structure. (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ): Space group P1, a = 920.1(3), b = 1597.2(5), c = 1613.9(4) pm, α = 66.02(2), β = 84.53(2), γ = 85.99(2)°, V = 2156(1) · 106 pm3; (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14]·DMF ( 2 ): Space group P21, a = 1201.21(9), b = 3031.1(2), c = 1294.96(9) pm, β = 108.935(7)°, V = 4459.8(5) · 106 pm3; (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ): Space group Pnma, a = 2349.9(2), b = 1623.83(9), c = 980.75(7) pm, V = 3742.4(5) · 106 pm3.  相似文献   

18.
The reactivity of [{(Ph2PC6H4)2B(η6‐Ph)}RuCl][B(C6F5)4] ( 1 ) as a Lewis acid was investigated. Treatment of 1 with mono and multidentate phosphorus Lewis bases afforded the Lewis acid–base adducts with the ortho‐carbon atom of the coordinated arene ring. Similar reactivity was observed upon treatment with N‐heterocyclic carbenes; however, adduct formation occurred at both ortho‐ and para‐carbon atoms of the bound arene with the para‐position being favoured by increased steric demands. Interestingly treatment with isocyanides resulted in adduct formation with the B‐centre of the ligand framework. The hydride‐cation [{(Ph2PC6H4)2B(η6‐Ph)}RuH] [B(C6F5)4] was prepared via reaction of 1 with silane. This species in the presence of a bulky phosphine behaves as a frustrated Lewis pair (FLP) to activate H2 between the phosphorus centre and the ortho‐carbon atom of the η6‐arene ring.  相似文献   

19.
Condensation of 2-hydroxybenzaldehyde (salicylaldehyde) or 2-hydroxy-1-naphthaldehyde with 2-ethylaniline yields the Schiff base compound of (E)-2-(((2-ethylphenyl)imino)methyl)phenol (HL1) or (E)-1-(((2-ethylphenyl)imino)methyl)naphthalen-2-ol (HL2), which in turn react with the dinuclear complex of [Rh(η4-cod)(µ-O2CCH3)]2 (cod = cycloocta-1,5-diene) to afford the mononuclear (η4-cod){(E)-2-(((2-ethylphenyl)imino)methyl)phenolato-κ2N,O}rhodium(I), [Rh(η4-cod)(L1)] (1) or (η4-cod){(E)-1-(((2-ethylphenyl)imino)methyl)naphthalen-2-olato-κ2N,O}rhodium(I), [Rh(η4-cod)(L2)] (2) (L1 or L2 = deprotonated Schiff base ligand). The X-ray structure determination revealed that the HL2 exists in the solid state not as the usual (imine)N···H-O(phenol) form (enolamine form) but as the zwitterionic (imine)N-H+···O(phenol) form (ketoamine form). 1H NMR spectra for HL2 in different solvents demonstrated the existence of keto-enol tautomerism (i.e., keto ⇆ enol equilibrium) in solution. The structure for 1 and 2 showed that the deprotonated Schiff base ligand coordinates to the Rh(η4-cod)-fragment as a six-membered N^O-chelate around the rhodium atom with a close-to-square-planar geometry. Two symmetry-independent molecules (with Rh1 and Rh2) were found in the asymmetric unit in 1 in a structure with Z’ = 2. The supramolecular packing in HL2 was organized by π-π and C-H···π contacts, while only two recognized C-H···π contacts were revealed in 1 and 2. Remarkably, there were reciprocal or pairwise C-H···π contacts between a pair of each of the symmetry-independent molecules in 1. This pairwise C-H contact to the Rh-N^O chelate (metalloaromatic) ring may be a reason for the two symmetry-independent molecules in 1. Differential scanning calorimetry (DSC) analyses revealed an irreversible phase transformation from the crystalline-solid to the isotropic-liquid phase and subsequently confirmed the thermal stability of the compounds. Absorption spectra in solution were explained by excited state properties from DFT/TD-DFT calculations.  相似文献   

20.
Synthesis and crystal structure of 1,6-Bis-(N,N-diethylaminothiocarbamoylimino)-1,6-diphenyl-2,5-dithiahexane are reported as well as those of its dimeric AgI complex (as monotoluene adduct of the diperchlorate) and its tetrameric μ-tetrabromo AgI complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号