首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CN‐15‐x series materials with different doses of SBA‐15 template and the CN‐y‐2.0 series materials with different hard templates were prepared by the hard template method with hexamethylenetetramine as the carbon and nitrogen source. The obtained mesoporous carbon materials were characterized by X‐ray diffraction (XRD), N2 adsorption–desorption, transmission electron microscopy (TEM), Raman spectroscopy, and X‐ray photoelectron spectroscopy (XPS). The catalytic performance of propane oxidative dehydrogenation was determined. The characterization results indicate that the catalytic activity of CN‐15‐2.0 with a bipartite hexagonal ordered structure was higher than those of the other materials. The conversion of propane was 22.98%, and the selectivity toward propylene was 41.70%.  相似文献   

2.
An electronically push–pull type dimethylaminoazobenzene–fullerene C60 hybrid was designed and synthesized by tailoring N,N‐dimethylaniline as an electron donating auxochrome that intensified charge density on the β‐azonitrogen, and on N‐methylfulleropyrrolidine (NMFP) as an electron acceptor at the 4 and 4′ positions of the azobenzene moiety, respectively. The absorption and charge transfer behavior of the hybrid donor‐bridge‐acceptor dyad were studied experimentally and by performing TD‐DFT calculations. The TD‐DFT predicted charge transfer interactions of the dyad ranging from 747 to 601 nm were experimentally observed in the UV‐vis spectra at 721 nm in toluene and dichloromethane. A 149 mV anodic shift in the first reduction potential of the N?N group of the dyad in comparison with the model aminoazobenzene derivative further supported the phenomenon. Analysis of the charge transfer band through the orbital picture revealed charge displacement from the n(N?N) (nonbonding) and π (N?N) type orbitals centered on the donor part to the purely fullerene centered LUMOs and LUMO+n orbitals, delocalized over the entire molecule. The imposed electronic perturbations on the aminoazobenzene moiety upon coupling it with C60 were analyzed by comparing the TD‐DFT predicted and experimentally observed electronic transition energies of the dyad with the model compounds, NMFP and (E)‐N,N‐dimethyl‐4‐(p‐tolyldiazenyl)aniline (AZNME). The n(N?N) → π*(N?N) and π(N?N) → π*(N?N) transitions of the dyad were bathochromically shifted with a significant charge transfer character. The shifting of π(N?N) → π*(N?N) excitation energy closer to the n → π*(N?N) in comparison with the model aminoazobenzene emphasized the predominant existence of charge separated quinonoid‐like ground state electronic structure. Increasing solvent polarity introduced hyperchromic effect in the π(N?N) → π*(N?N) electronic transition at the expense of transitions involved with benzenic states, and the extent of intensity borrowing was quantified adopting the Gaussian deconvolution method. On a comparative scale, the predicted excitation energies were in reasonable agreement with the observed values, demonstrating the efficiency of TD‐DFT in predicting the localized and the charge transfer nature of transitions involved with large electronically asymmetric molecules with HOMO and LUMO centered on different parts of the molecular framework. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

3.
The development of efficient and selective aerobic oxidation of alkylarenes to form more functional compounds by heterogeneously catalysed routes still presents a great challenge in the fine chemical industry and is a major research topic. In this work, gold nanoparticles supported on three‐dimensional nitrogen‐doped graphene‐based frameworks (Au NPs@3D‐(N)GFs) were successfully synthesized and found to have an impressive performance as bifunctional catalysts (nitrogen dopant as base and gold nanoparticles as active site) in the controlled oxidation of alkylarenes. The catalyst was found to be a simple bench top, stable, recyclable and selective catalytic system for the aerobic oxidation of various types of alkylarenes into their corresponding ketones at room temperature under environmentally friendly conditions with good yields and high selectivity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Using dispersion-corrected density functional theory (DFT) calculations, a single Cu adatom incorporated nitrogen-doped graphene (CuN3-Gr) is proposed as a new and highly active noble-metal-free catalyst for carbon monoxide (CO) oxidation reaction. According to our results, the Cu adatom can be stably anchored onto the monovavancy site of the nitrogen-doped graphene, and the resulting large diffusion barrier suggests that the metal clustering is avoided in CuN3-Gr. Three possible reaction mechanisms for CO oxidation (ie, Eley–Rideal, Langmuir–Hinshelwood, and termolecular Eley–Rideal) are systematically studied. It is found that the activation energy for the rate-determining step of the termolecular Eley–Rideal mechanism is only 0.13 eV, which is much smaller than those of others. The results of this study may provide a useful guideline for the design of highly active and promising single-metal catalysts for the CO oxidation reaction based on graphene.  相似文献   

5.
6.
By means of density functional theory computations, we examine the stability and CO oxidation activity of single Ru on CeO2(111), TiO2(110) and Al2O3(001) surfaces. The heterogeneous system Ru1/CeO2 has very high stability, as indicated by the strong binding energies and high diffusion barriers of a single Ru atom on the ceria support, while the Ru atom is rather mobile on TiO2(110) and Al2O3(001) surfaces and tends to form clusters, excluding these systems from having a high efficiency per Ru atom. The Ru1/CeO2 exhibits good catalytic activity for CO oxidation via the Langmuir–Hinshelwood mechanism, thus is a promising single‐atom catalyst.  相似文献   

7.
Electrocatalytic conversion of carbon dioxide (CO2) has recently received considerable attention as one of the most feasible CO2 utilization techniques. In particular, copper and copper‐derived catalysts have exhibited the ability to produce a number of organic molecules from CO2. Herein, we report a chloride (Cl)‐induced bi‐phasic cuprous oxide (Cu2O) and metallic copper (Cu) electrode (Cu2OCl) as an efficient catalyst for the formation of high‐carbon organic molecules by CO2 conversion, and identify the origin of electroselectivity toward the formation of high‐carbon organic compounds. The Cu2OCl electrocatalyst results in the preferential formation of multi‐carbon fuels, including n‐propanol and n‐butane C3–C4 compounds. We propose that the remarkable electrocatalytic conversion behavior is due to the favorable affinity between the reaction intermediates and the catalytic surface.  相似文献   

8.
An open‐cage C60 tetraketone with a large opening was able to encapsulate N2 and CO2 molecules after its exposure to high pressures of N2 and CO2 gas. A subsequent selective reduction of one of the four carbonyl groups on the rim of the opening induced a contraction of the opening (→ 2 ) and trapped the guest molecules inside 2 . The thus‐obtained host–guest complexes N2@ 2 and CO2@ 2 could be isolated by recycling HPLC, and were found to be stable at room temperature. The molecular structures of N2@ 2 and CO2@ 2 were determined by single‐crystal X‐ray diffraction analyses, and revealed a short N?N triple bond for the encapsulated N2, as well as an unsymmetric molecular structure for the encapsulated molecule of CO2. The IR spectrum of CO2@ 2 suggested that the rotation of the encapsulated molecule of CO2 is partially restricted, which was supported by DFT calculations.  相似文献   

9.
A novel synthetic strategy was developed to prepare polyphosphazenes containing C60 moieties as side chains. Thus, a new reactive macromolecular intermediate, polyphosphazene azides ( P1 ), was obtained from poly(dichlorophosphazene) by the direct nucleophilic substitution reaction. Then the azide group in P1 reacted with C60 molecules to afford the first example of C60‐containing polyphosphazenes ( P2 and P3 ). The polymers are soluble in common organic solvents. Molecular structural characterization for the polymers was presented by 1H NMR, 13C NMR, IR, ultraviolet–visible spectra, and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 194–199, 2004  相似文献   

10.
In the present work, CuO nanoparticles grown on three‐dimensional nitrogen‐doped graphene‐based frameworks (CuO@3D‐(N)GFs) were synthesized using a two‐step method. After the synthesis of three‐dimensional nitrogen‐doped graphene, CuO nanoparticles were deposited on it, by adding cupric acetate followed by thermal treatment. Different analysis methods were used to characterize the products. The as‐prepared nanocomposite was used as a promising catalyst for thermal decomposition of ammonium perchlorate (AP) as one of the most common oxidizer in composite propellants. Differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA) techniques were used to investigate the thermal decomposition of ammonium perchlorate. According to the DSC/TGA, high temperature decomposition of AP decreased to 111 °C in the presence of 4% CuO@3D‐(N)GFs and the total heat release (ΔH) from decomposition of AP increased to 1893 J g?1 which is much more than 590 J g?1 for pure AP.  相似文献   

11.
Using density functional theory calculations, the adsorption and catalytic decomposition of formic acid (HCOOH) over Si‐doped graphene are investigated. For the stable adsorption geometries of HCOOH over Si‐doped graphene, the electronic structure properties are analyzed by adsorption energy, density of states, and charge density difference. A comparison of the reaction pathways reveals that both dehydration and dehydrogenation of HCOOH can occur over Si‐doped graphene. The estimated reaction energies and the activation barriers suggest that for the dehydration of HCOOH on the Si‐doped graphene, the rate‐controlling step is H + OH → H2O reaction. For the dehydrogenation of HCOOH, the rate‐determining step is the breaking of the C? H bond of the HCOO group to form the CO2 molecule and the atomic H. Our results reveal that the low cost Si‐doped graphene can be used as an efficient nonmetal catalyst for O? H bond cleavage of HCOOH. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
This study shows a facile approach for the preparation of CeO2 nanoparticles decorated with porous nitrogen‐doped graphene (NG) nanosheets for effective photocatalytic degradation of methylene blue (MB). NG nanosheets were first synthesized using a hydrothermal method and then nitrogen‐doped graphene‐cerium oxide (NG‐CeO2) was prepared through mixing of cerium nitrate with different concentrations of NG under ultrasonication followed by hydrothermal treatment. The synthesized nanocomposites were characterized using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE‐SEM). The photocatalytic activity of the synthesized nanocomposites was analyzed against MB dye. Results showed that the nanocomposites of NG‐CeO2 have an average particle size of 20 nm. The as‐prepared NG‐CeO2 nanocomposites exhibited outstanding photocatalytic activity for dye degradation under visible light irradiation, which could be attributed to synergistic effects between the NG nanosheets and CeO2. The quantum of photodegradation increases with the increase of the NG content in the nanocomposites.  相似文献   

13.
Nitrogen-doped TiO2 nanoparticle photocatalysts were obtained by an annealing method with gaseous ammonia and nitrogen. The influence of dopant N on the crystal structure was characterized by XRD, XPS, BET, TEM and UV-Vis spectra. The results of XRD indicate that, the crystal phase transforms from anatase to rutile structure gradually with increase of annealing temperature from 300 to 700 ℃. XPS studies indicate that the nitrogen atom enters the TiO2 lattice and occupies the position of oxygen atom. Agglomeration of particles is found in TEM images after annealing. BET results show that the specific surface areas of N-doped samples from 44.61 to 38.27 m2/g are smaller than that of Degussa TiO2. UV-Vis spectra indicate that the absorption threshold shifts gradually with increase of annealing temperature, which shows absorption in the visible region. The influence of annealing condition on the photocatalytic property has been researched over water decomposition to hydrogen, indicating that nitrogen raises the photocatalytic activity for hydrogen evolution, and the modified TiO2 annealed for 2 h at 400 ℃ under gas of NH3/N2 (V/V=1/2) mixture shows better efficiency of hydrogen evolution. Furthermore, the N-doped TiO2 nanoparticle catalysts have obvious visible light activity, evidenced by hydrogen evolution under visible light (λ>400 nm) irradiation. However, the catalytic activity under visible light irradiation is absent for Degussa as reference and the N-doped TiO2 annealed at 700 ℃.  相似文献   

14.
Reversible interconversion of water into H2 and O2, and the recombination of H2 and O2 to H2O thereby harnessing the energy of the reaction provides a completely green cycle for sustainable energy conversion and storage. The realization of this goal is however hampered by the lack of efficient catalysts for water splitting and oxygen reduction. We report exceptionally active bifunctional catalysts for oxygen electrodes comprising Mn3O4 and Co3O4 nanoparticles embedded in nitrogen‐doped carbon, obtained by selective pyrolysis and subsequent mild calcination of manganese and cobalt N4 macrocyclic complexes. Intimate interaction was observed between the metals and nitrogen suggesting residual M–Nx coordination in the catalysts. The catalysts afford remarkably lower reversible overpotentials in KOH (0.1 M ) than those for RuO2, IrO2, Pt, NiO, Mn3O4, and Co3O4, thus placing them among the best non‐precious‐metal catalysts for reversible oxygen electrodes reported to date.  相似文献   

15.
The interactions of the nucleobases thymine (C5H6N2O2) and uracil (C4H4N2O2) with Cr‐doped C20 fullerene (C19Cr) are investigated by performing density functional theory calculations. The adsorption of these nucleobases on C19Cr leads to two distinct geometries (P1 and P2) differing in the orientation of the nucleobases. The interaction of the nucleobases with the C19Cr nanocluster is highly exothermic, revealing that they are chemically adsorbed on C19Cr. The results show that the binding energy of the thymine–C19Cr complex is slightly higher than that of the uracil–C19Cr complex. In addition, the P2 geometry is more stable compared to P1 due to the higher binding energy in the former configuration. However, based on the results of natural bond orbital and frontier molecular orbitals analyses, the C19Cr nanocage has higher reactivity with the nucleobases in P1 geometry in comparison with P2 due to the larger charge transfer and orbital hybridization in the former geometry. Moreover, the band gap of the C19Cr nanocage decreases after interaction with the nucleobases, and interestingly the impact is more pronounced for P1 geometry, confirming the higher sensitivity of C19Cr to the nucleobases in P1 geometry. Our findings reveal the promising potential of C19Cr as an organometallic carrier for nucleobases thymine and uracil.  相似文献   

16.
A porous, nitrogen‐doped carbonaceous free‐standing membrane (TFMT‐550) is prepared by a facile template‐free method using letrozole as an intermediate to a triazole‐functionalized‐triazine framework, followed by carbonization. Such adsorption/diffusion membranes exhibit good separation performance of CO2 over N2 and surpassing the most recent Robeson upper bound. An exceptional ideal CO2/N2 permselectivity of 47.5 was achieved with a good CO2 permeability of 2.40 × 10−13 mol m m−2 s−1 Pa−1. The latter results arise from the presence of micropores, narrow distribution of small mesopores and from the strong dipole–quadrupole interactions between the large quadrupole moment of CO2 molecules and the polar sites associated with N groups (e.g., triazine units) within the framework.  相似文献   

17.
A novel BOPHY–fullerene C60 dyad ( BP-C60 ) was designed as a heavy-atom-free photosensitizer (PS) with potential uses in photodynamic treatment and reactive oxygen species (ROS)-mediated applications. BP-C60 consists of a BOPHY fluorophore covalently attached to a C60 moiety through a pyrrolidine ring. The BOPHY core works as a visible-light-harvesting antenna, while the fullerene C60 subunit elicits the photodynamic action. This fluorophore–fullerene cycloadduct, obtained by a straightforward synthetic route, was fully characterized and compared with its individual counterparts. The restricted rotation around the single bond connecting the BOPHY and pyrrolidine moieties led to the formation of two atropisomers. Spectroscopic, electrochemical, and computational studies disclose an efficient photoinduced energy/electron transfer process from BOPHY to fullerene C60. Photodynamic studies indicate that BP-C60 produces ROS by both photomechanisms (type I and type II). Moreover, the dyad exhibits higher ROS production efficiency than its individual constitutional components. Preliminary screening of photodynamic inactivation on bacteria models (Staphylococcus aureus and Escherichia coli) demonstrated the ability of this dyad to be used as a heavy-atom-free PS. To the best of our knowledge, this is the first time that not only a BOPHY–fullerene C60 dyad is reported, but also that a BOPHY derivative is applied to photoinactivate microorganisms. This study lays the foundations for the development of new BOPHY-based PSs with plausible applications in the medical field.  相似文献   

18.
A series of photoresponsive‐group‐containing nanorings hosts with 12~14 Å in diameter is designed by introducing different number of azo groups as the structural composition units. And the host–guest interactions between fullerene C60 and those nanoring hosts were investigated theoretically at M06‐2X/6‐31G(d)//M06‐L/MIDI! and wB97X‐D/6‐31G(d) levels. Analysis on geometrical characteristics and host–guest binding energies revealed that the designed nanoring molecule (labeled as 7 ) which is composed by seven azo groups and seven phenyls is the most feasible host for encapsulation of C60 guest among all candidates. Moreover, inferring from the simulated UV‐vis‐NIR spectroscopy, the C60 guest could be facilely released from the cavity of the host 7 via configuration transformation between trans‐form and cis‐form of the host under the 563 nm photoirradiation. Additionally, the frontier orbital features, weak interaction regions, infrared, and NMR spectra of the C60@7 host–guest complex have also been investigated theoretically. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
We prepared a non‐covalently coupled hybrid of reduced graphene oxide (rGO)‐doped graphitic carbon nitride (g‐C3N4) by freezing‐assisted assembly and calcination. Fourier transform infrared, Raman and X‐ray photoelectron spectroscopies and transmission electron microscopy confirmed that rGO was incorporated into the bulk g‐C3N4, which was an ideal support for loading Pd nanoparticles. The Pd nanoparticles with an average size of 4.57 nm were uniformly dispersed on the rGO‐doped g‐C3N4 surface. The layered structure provided large contact area of g‐C3N4 with rGO, further accelerating the electron transfer rate and inhibiting electron–hole recombination. Consequently, compared with Pd/rGO/g‐C3N4 and Pd/g‐C3N4, the Pd/rGO‐doped g‐C3N4 showed a prominent catalytic activity for visible‐light‐driven photocatalytic Suzuki–Miyaura coupling at ambient temperature. The Pd/rGO‐doped g‐C3N4 exhibited very high stability after six consecutive cycles with minimal loss of catalytic activity.  相似文献   

20.
This study explores the kinetics, mechanism, and active sites of the CO2 electroreduction reaction (CO2RR) to syngas and hydrocarbons on a class of functionalized solid carbon‐based catalysts. Commercial carbon blacks were functionalized with nitrogen and Fe and/or Mn ions using pyrolysis and acid leaching. The resulting solid powder catalysts were found to be active and highly CO selective electrocatalysts in the electroreduction of CO2 to CO/H2 mixtures outperforming a low‐area polycrystalline gold benchmark. Unspecific with respect to the nature of the metal, CO production is believed to occur on nitrogen functionalities in competition with hydrogen evolution. Evidence is provided that sufficiently strong interaction between CO and the metal enables the protonation of CO and the formation of hydrocarbons. Our results highlight a promising new class of low‐cost, abundant electrocatalysts for synthetic fuel production from CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号